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Abstract—Predicting opponents’ moves and hidden states is
important in imperfect information games. This paper describes
a method for building a Mahjong program that models opponent
players and performs Monte Carlo simulation with the models.
We decompose an opponent’s play into three elements, namely,
waiting, winning tiles, and winning scores, and train prediction
models for those elements using game records of expert human
players. Opponents’ moves in the Monte Carlo simulations are
determined based on the probability distributions of the opponent
models. We have evaluated the playing strength of the resulting
program on a popular online Mahjong site “Tenhou”. The
program has achieved a rating of 1718, which is significantly
higher than that of the average human player.

I. I NTRODUCTION

In artificial intelligence research, imperfect information
games provide challenging and important research questions
since such games require one to address common problems in a
real world, in which players deal with hidden information and
stochasticity. Mahjong is a traditional imperfect information
game played in many Asian countries. Among many variants
of Mahjong, we focus on Japanese Mahjong, which is one
of the most popular table games in Japan. From an AI
research point of view, Japanese Mahjong is a challenging
game because (a) it is played with more than two players,
(b) it is an imperfect information game, and (c) the number
of information sets is much bigger than those of popular card
games such as poker.

A two-player version of Texas Hold’em, one of the most
popular poker variants, has recently been solved by off-line
computing of an approximate Nash equilibrium strategy [1].
However, this type of approach is not always feasible since the
computational cost for obtaining Nash equilibrium strategies
can be prohibitive in certain games. Another approach for
building computer players for imperfect information games
is using opponent models. For opponent modeling, Van der
Kleij [2] clusters players based on their playing style using
game records. A hand rank distribution is updated in the course
of games [3]. In computer Skat, Buro et al. [4] proposed a
method that estimates an arbitrary hypothetical world when
a player decides moves in the current position using game
records. The hypothetical world consists of distributing cards
between the unobserved hands of opponents. As the result of
training on data from average human players and inference on
high-level features of worlds, their Skat-playing program plays
at the level of experts human player.

In this work, we build a computer Mahjong player using

opponent models for predicting three abstracted elements of an
opponent, namely,waiting, winning tilesand winning scores.
First, we train the three prediction models using game records
of expert human players. We then build a computer Mahjong
player that determines its move by using these prediction mod-
els and Monte Carlo simulation. We present the performance
of our program against human players and a state-of-the-art
program.

This paper is organized as follows. Section II describes
basic rules and terms of Mahjong. Section III presents what
we call one-player Mahjong moves. Section IV, V and VI
describe prediction models about waiting, winning tiles and
winning scores. Section VII describes how to decide moves
using prediction results and Monte Carlo simulation. Section
VIII shows some experimental results. Section IX describes
related work. Finally, the conclusion is presented in section
X.

II. BASIC RULES AND TERMS OFJAPANESEMAHJONG

This section describes basic rules and terms of Japanese
Mahjong (which we simply call Mahjong in what follows).
Mahjong is a table game in which four players start with a
score of 25,000 points and compete to achieve the highest
score. One game of Mahjong usually consists of four or eight
rounds. A player can win a round by completing a winning
hand consisting of 14tiles, and get a score according to the
hand. At each turn in a round, a player picks up a tile from
the wall (a set of tiles shared by all players), or picks up a
tile discarded by another player, which is calledstealing. He
then discards a tile or declares a win. When a player picks up a
winning tile himself, it is calledwinning-from-the-wall, and the
other three players share the responsibility of paying out the
score. A player can call outron when one of the other players
discards a winning tile. It is calledwinning-by-a-discard, and
the player who has discarded the tile pays the whole score to
the winner.

Mahjong is played using 136 tiles, comprising 34 distinct
kinds with four of each kind. One hundred and eight of them
are number tiles. Each has a number from one to nine and
one of threesuits (numbers, balls, and sticks). The rest are
honor tiles with no particular ordering. Honor tiles comprise
wind tiles(east, south, west and north) anddragon tiles(white,
green and red).

Each player usually tries to make a hand of foursets
(melds) and one pair of tiles. There are two kinds of set, a



pung, three identical tiles, and achow, three consecutive tiles
of the same suit.

Here, we describe some basic Mahjong terms particularly
relevant to this work.

Waiting
A player iswaiting if his hand needs only one tile
to become complete.

Riichi
A player can declareriichi when he is waiting
with no melds made by stealing. Once a player
declares riichi, he must discard every tile he picks
up except when it is a winning tile.

Folding
A player folds if he gives up to win and only
tries to avoid discarding a winning tile for other
players. Unlike poker, players do not explicitly
declare a fold, and thus folding is not an action
but a strategy in Mahjong.

III. O NE-PLAYER MAHJONG MOVES

This section gives a brief explanation of what we call one-
player Mahjong moves, which play an important role in our
Monte Carlo simulation. First, we define one-player Mahjong
as a game of Mahjong in which there is only one player. The
goal of the player in a one-player Mahjong game is to complete
his hand.

In our previous work [5], we developed a computer pro-
gram for one-player Mahjong by supervised machine learning.
Given a set of 14 tiles, the program can select the move (i.e.
tile) that is most likely to lead to quick completion of the
hand. Always playing such moves in a standard (four-player)
Mahjong game is not a good strategy because you never make
a meld by stealing. We therefore extended the program with
a machine learning-based component that makes judgments
on stealing. In this paper, we call the moves chosen by this
extended programone-player Mahjong moves.

Playing such one-player Mahjong moves still does not
result in strong Mahjong play, because you never fold and
often discard a winning tile for other players. In this paper, we
address this problem by combining one-player Mahjong moves
with moves selected by Monte Carlo simulations, using three
prediction models for opponent modeling. The main idea is to
achieve a good balance between quick completion of a hand
and minimizing the expected loss from discarding a winning
tile for other players. In the following sections, we describe
our prediction models in detail.

IV. PREDICTION OF WAITING

This section describes how to train the model that predicts
whether an opponent is waiting or not. In Mahjong, a player
poses no immediate risk to other players, if he is not wait-
ing. Accurate prediction of waiting is therefore important in
building a strong Mahjong program.

A. Game records for training

We take a supervised machine learning approach for build-
ing the prediction model. We use game records in the “Houou

TABLE I. FEATURES OF WAITING PREDICTION

Features Number of features

Riichi 1
Number of revealed melds and discarded tiles 5 × 19 = 95
Number of revealed melds and turns 4 × 19 = 76

Number of revealed melds and changed tiles3 5 × 19 = 95
Number of revealed melds and last discarded tiles 5 × 37 = 185
Kinds of revealed melds and discarded tiles 136 × 37 = 5032

Discardbonus tiles4and kinds of bonus tiles 34
Discard red bonus tiles5 1
Combination of two discarded tiles 37 × 37 = 1369

table” at the internet Mahjong site called Tenhou1 as the
training data2. Only the top 0.1% of the players are allowed to
play in the Houou table, so we consider the quality of those
game records to be that of expert human players.

For each state in the game records, we generate a binary
label indicating whether the opponent’s hand is waiting or not,
and a feature vector from the other players’ points of view. The
total number of states is about1.77× 107.

B. Training the model

We use logistic regression to build a prediction model.
The probability that an opponent is waiting in a given state
is computed as follows:

P (p = waiting) =
1

1 + exp (−wTxp)
, (1)

where xp is a feature vector representing the information
about an opponent playerp and w is the weight vector for
the features. Table I shows the features used in the model.
Examples of the features include kinds of tiles an opponent
player has discarded and the number of revealed melds and
turns. The total number of features is 6,888.

The training of the prediction model is performed by
minimizing the following objective function:

L(w) = −
N∑
i=1

(ciP (Xi)+(1− ci)(1−P (Xi))+
λ|w|2

N
, (2)

where N is the number of training examples,Xi is the i-
th training sample,ci is the binary (1 or 0) label indicating
whether the opponent is waiting or not andλ is the regu-
larization term, which is used for alleviating the problem of
overfitting to the training data. We set the regularization term
λ to 0.01.

We use the FOBOS algorithm [6] to train the weight vector.
The weights are updated by using Adagrad [7]. The update
equation is as follows:

wt+1,i = wt,i −
ηgt,i√

1 +
∑t

k=1g
2
k,i

, (3)

where wt,i is the i-th elements of the weight vector,η is
the learning rate,t is the number of updates andg is the
(stochastic) gradient of the objective function. We set the
learning rateη to 0.01.

1http://tenhou.net/
2The game records are the records of the games played between 20/02/2009

and 31/12/2013



TABLE II. E VALUATION OF WAITING PREDICTION

Player AUC

Expert player 0.778
Prediction model 0.777
-Discarded tiles 0.772
-Number of revealed melds 0.770

C. Accuracy of prediction

We examine the accuracy of the prediction model described
in the previous by using the Area Under the Curve (AUC）
as the measure for evaluation. We created the test data by
randomly selecting 100 states from the game records (only
one state has been sampled from each round). We did not
include the states where the target opponent player has already
declared riichi since the waiting prediction is straight-forward
in such states.

Table II shows the evaluation results. The “Expert player”
in the table is an expert human player who is allowed to play
in the Houou table. The results show that our prediction model
has roughly the same prediction ability as the expert player.
We also show the performance achieved by the prediction
models that do not use a certain type of features, just below
the“Prediction model”.

V. PREDICTION OF WINNING TILES

This section describes how to train the model that predicts
opponents’ winning tiles. In Mahjong, the player who has
discarded the opponents’ winning tile pays the whole score
to the opponent, i.e., it is very damaging to the player. It
is therefore important for a program to be able to predict
opponents’ winning tiles accurately.

A. Game records for training

We use the same game records as the ones described in
Section IV. For each kind of tiles, we generate a binary
value indicating whether it is a winning tile or not, and a
feature vector representing the information available to the
other players. The total number of states is about7.24× 107.

B. Training for predicting winning tiles

In general, there are one or more winning tiles for an
opponent. We therefore address this task as a binary prediction
(i.e. a winning tile or not) problem for each kind of the
Mahjong tiles, and build 34 prediction models using logistic
regression.

Table III shows the features used in the model. Examples
of the features include the number of each kind of tiles and
the tiles the opponent has already discarded. The total number
of features is 31,416.

We train the prediction models in the same fashion as we
did for the waiting prediction models described in the previous

3A player discards the tile that has existed in his hand
4If a player wins withbonus tiles, the score increases according to the

number of those.
5We use marked red number 5 tiles that also count as bonus tiles.

TABLE III. F EATURES OF WINNING TILE PREDICTION

Features Number of features

Number of tiles a player can count 5 × 34 = 170

Safety tiles6 34
Changed tilesn times 3 × 34 = 102
Bonus tiles 34
The number of turns and tiles 18 × 37 = 666
Tiles a player discard when a player declares riichi 37
Kinds of revealed melds and discarded tiles 136 ∗ 37 = 5032
Combination of kinds of revealed melds 136 ∗ 136 = 18496
Combination of discarded tiles and whether changed tiles or not37 × 37 × 2 × 2 = 5476
Discarded tiles and changed tiles 37 × 37 = 1369

TABLE IV. E VALUATION OF WINNING TILE PREDICTION

Player Evaluation value

Expert player 0.744
Prediction model 0.676
-Revealed melds 0.675
-Discarded tiles 0.673
Random 0.502

section. The objective function is

L(w) = −
N∑
i=1

(ciP (Xi) + (1− ci)(1− P (Xi)) +
λ|w|
N

, (4)

where N is the number of training examples,Xi is the i-
th training sample,ci is the binary (1 or 0) label indicating
whether the tile is a winning tile or not andλ is the regular-
ization term. We usel1-regularization to achieve sparsity in
the weight vector.

We used FOBOS and Adagrad for optimization. We set the
learning rateη to 0.01 and the regularization termλ to 0.01.

C. Accuracy of prediction

Evaluation of the model for predicting winning tiles should
reflect the rules of Mahjong. We need to predict all winning
tiles for opponents accurately since discarding any of them
will lead to the losing of the round. We therefore perform the
evaluation of the models as follows. The tiles that a player
has are arranged in ascending order of probability of being a
winning tile. The evaluation value is computed as follows:

Evaluation value =
N∑
i=1

Cleari
ATi −WTi

, (5)

whereN is the number of test samples,Cleari is the smallest
rank among the winning tiles,ATi (All T iles) is the number of
the kinds of the tiles the player has andWTi (Winning T iles)
is the number of the kinds of the winning tiles.

We created the test data by randomly selecting 100 states
from the game records (only one state has been sampled from
each round). Table IV shows the evaluation results.Random
is a player that discards tiles randomly. The results show that
the performance of the prediction model is considerably higher
than that of Random but is lower than that of an expert player.

VI. PREDICTION OF SCORES

This section describes how to train a model that predicts
the score that the player has to pay if the tile he discards is
a winning tile for an opponent. The model for the case of
winning-from-the-wall is trained analogously.

6The tiles a player has already discarded.



TABLE VI. E VALUATION OF SCORE PREDICTION

Player Mean square error

Prediction model 0.37
-Revealed Melds 0.38
-Revealed fan value 0.38
Expert player 0.40

A. Game records for training

For each state where a player has won in the game records,
we generate a training sample by using the score and creating
a feature vector representing the information available to the
other players. The total number of states is about5.92× 107.

B. Training for predicting scores

In Mahjong, the score of a hand basically increases ex-
ponentially according to thefan7 value of the hand. We
therefore build a linear regression model that predicts the
natural logarithm of an actual score in the training data.
Table V shows the features used in the model. Examples of the
features include the fan value of the revealed melds and the
number of revealed bonus tiles. The total number of features
is 26,889.

The model predictsHS (HandScore) in a given state as
follows:

HS = wTx, (6)

wherex is a feature vector andw is the weight vector for the
features.

The training of the prediction model is performed by
minimizing the following objective function:

L(w) =
N∑
i=1

(HSi − ci)
2 +

λ|w|2

N
, (7)

where N is the number of training examples,HSi is the
predicted value,ci is the natural logarithm of the actual game
score andλ is the regularization term. When using this model,
the output of the model is exponentiated to obtain the actual
score in the original scale. We use FOBOS and Adagrad to
train the weight vector. We set the learning rateη to 0.01 and
the regularization termλ to 0.01.

C. Accuracy of prediction

We evaluated the model using mean square error between
the predicted value and the actual score. We created the test
data by randomly selecting 100 states from the game records
(only one state has been sampled from each round). We give
human subjects information about the tiles the players have
discarded and who wins. The evaluation results in Table VI
show that the performance of the prediction model is even
higher than that of an expert player.

7Fan is the sum of the values of winning hands.
8Tiles are three adjacent numerical to safety tiles.
9A hand consisting of only 2 through 8 number tiles.
10Dragons tiles, a player’s own wind tiles and wind of the round tiles.
11A hand consisting of only one suit and honor tiles
12A hand consisting of only pungs and a pair.

My hand

・・・ Virtual fold

Fig. 1. Overview of Monte Carlo moves

Fig. 2. Flowchart of each player

VII. M ONTE CARLO MOVES USING OPPONENT MODELING

This section describes how our program determines its
move (action) by using the prediction models and performing
Monte Carlo simulations. The evaluation results given in the
previous sections demonstrate that the performance of the
prediction models for the three kinds of states of opponents’
hands is comparable to that of expert players. We use the
models to estimate an expected value that our program pays.

We defineLP (Losing Probability) as the probability that
an opponentp is waiting andTile is the winning tile for him
and it is computed as follows:

LP (p, T ile) = P (p = waiting)× P (Tile = winning),
(8)

wherep is an opponent player andTile is the tile the program
discards.EL (ExpectedLoss) is LP multiplied by HS and
computed as follows:

EL(p, T ile) = LP (p, T ile)×HS(p, T ile). (9)

The score that the program is expected to obtain by discarding
a tile is computed as

Score(Tile) = Sim(Tile)×∏
p∈opponents

(1− LP (p, T ile))−∑
p∈opponents

EL(p, T ile),

(10)

where Sim(Tile) is a game score computed using Monte
Calro simulation and the second term is the expected loss
the program has to pay when discardingTile. The program
calculatesScore(Tile) for each tile in its hand and selects
the tile that has the highest score. We call the moves that are
chosen in this wayMonte Carlo moves.



TABLE V. FEATURES OF SCORE PREDICTION

Features Number of features

Riichi and dealer 2 × 2 = 4
Revealed fan value and countable bonus tiles 7 × 8 = 56
Riichi or the number of revealed melds and revealed a fan value and countable bonus tiles 3 × 7 × 8 = 168
Kinds of revealed melds and revealed a fan value and countable bonus tiles 136 × 7 × 8 = 7616
Combination of two kinds of revealed melds 136 × 136 = 18496
The number of revealed melds and revealed a fan value and countable bonus tiles 5 × 7 × 8 = 280

Riichi and discarded tiles is suji8or all simples9 3 × 2 × 2 = 12

Steal non value honor10tiles and steal value honor tiles, the number of revealed melds is zero 3
Discarded tiles is bonus tiles, one or two adjacent numerical, same suit, no relation 5
A hand can create all simples and bonus tiles and countable bonus tiles 2 × 2 × 8 = 32

A hand can create flush11(honitsu and tinitsu) revealed a fan value and bonus tiles is same suit5 × 7 × 2 × 2 = 140

A hand can create all pungs12and revealed a fan value and bonus tiles is same suit 5 × 7 × 2 = 70
Number of revealed melds of dragon tiles 3
Number of revealed melds of wind tiles 4

Now we describe how we actually compute the values of
Sim(Tile) by Monte Carlo simulation. Figure 2 shows two
flowcharts representing what are done in the program’s and the
opponents’ turns. In the program’s turns, the program plays
a one-player Mahjong move. In opponents’ turns, they win
or declare riichi based on some probability distributions. The
discarded tiles are computed by assuming that the opponent
players pick up a tile from the wall and simply discard it
right away. We carry out the same number of simulations for
each tile. The same random numbers are used for controlling
opponents’ moves and for generating the wall to minimize the
effect of randomness in simulation.

A. Opponents’ turn

In opponents’ turns, they decide their moves based on
a probability distribution without considering their hands.
Instead, each of them has two binary parameters indicating
whether he is waiting or folding.

First, we describe the waiting parameter. An opponent can
win only when he has been waiting and picked up a winning
tile from the wall or someone has discarded a winning tile for
him. The initial value of the waiting parameter is a set to the
waiting probability predicted by the model given in section IV
in current states. The waiting parameter during the simulation
is determined when an opponent player picks up a tile based
on another probability distribution. We call the probability
WPET (Waiting Probability atEachTurn) and calculate
it using one-player Mahjong moves in advance.

We describe how to calculateWPET . First, we generate
a wall. For each turn, a player discards a tile based on one-
player Mahjong moves. The opponent players pick up a tile
from the wall and discard it. If a player becomes waiting, the
game is over and the turn is recorded. We calculateWPET
as follows:

WPETi =
BWi

Ri
, (11)

wherei is the turn number,BWi (BecomesWaiting) is the
number of times the player becomes waiting in the turn and
Ri (Reach) is the number of times the player reaches the turn.

There are two kinds of waiting, riichi and stealing. In the
case of riichi, a player cannot steal a tile. We calculateWPET
by playing106 games. Figure 3 shows the result. The kind of
waiting is decided based on the percentage of stealing before
the simulation is carried out and is not changed during the

Fig. 3. Probability of waiting player of each turn

simulation. The percentage of stealing is 35%, which is the
average of expert players.

Here we describe the folding parameter. If players do not
fold, players who declare riichi win easily. This is not a
realistic simulation. To solve this problem, we make opponent
players decide to fold.

First, we describe how to decide whether to fold or not
using a probability. The biggest difference between one-player
Mahjong moves and those in game records is folding. The
FP (Folding Probability) is calculated using game records
and one-player Mahjong moves as follows:

FP (situation) =
differentsituation
countsituation

, (12)

where situation is a combination of whether the program
is waiting or not and the number of opponent players who
have stolen tiles or declared riichi,differentsituation is
the percentage that top three one-player Mahjong moves are
different from those undersituation, andcountsituation is the
number ofsituation. The total number of situations is5, 739.
The total number of states is about1.28× 108.

We describe how to move for folding. Folding in Mahjong
differs from that of poker. A player does not need to declare
a fold, but he discards tiles. In real games, if a player decides
to fold, he can usually avoid discarding winning tiles for the
opponents. To emulate the folding situation, a player picks up
a tile and discards no tiles as fold in the simulation. We call
these movesvirtual folding. The other players cannot call out
ron.

The initial value of the folding parameter is set toNOT
FOLD. The folding parameter is determined when an opponent
player picks up a tile.



Fig. 4. Agreement rate of each threshold

B. Program’s turn

Our program decides moves based on one-player Mahjong
moves during the simulation. However, one-player Mahjong
moves always aim to win without folding, which results in
an unrealistic simulation. To solve this problem, our pro-
gram decides whether to do a virtual fold or not based
on a ODEV (One-DepthExpected V alue). ODEV is an
expected value that is calculated by searching game trees
without Monte Carlo simulation until the program’s next turn.
An expected value (fold value) and the probability of the
exhaustive draw13 (PED) can be calculated using virtual
folds. The probability distribution of picking up tiles and
opponents’ two parameters are fixed while calculating this
value. Algorithm 1 describes how to computeODEV . The
parameters of this algorithm are the same as those calculated
at the root node.

C. Swiching from one-player Mahjong moves to Monte Carlo
moves

In opening states, Monte Carlo moves tend to play bad
moves, because the time that can be used for simulation is
short and every player needs many moves to win. One-player
Mahjong moves are more suitable for opening states. We
switch from one-player Mahjong moves to Monte Calro moves
as follows:{

One−palyer Mahjong moves if(
∑

p∈opponents EL(p,T ile)

fold value ≦ α)

MonteCarlomoves otherwise
,

(13)
whereα is the threshold. The value ofα was set so that it
maximizes the agreement rate between the moves selected by
the program and the ones in the game records.

We used 10,000 states as the evaluation data. Monte Carlo
moves are always computed in a second. Figure 4 shows the
result. Rankn is the percentage that the topn candidate moves
match those in game records. We setα to 0.2 based on the
result.

VIII. E XPERIMENTS

In this section, we present evaluation results on the perfor-
mance of our program.

13No player wins after taking all tiles from the wall.

Algorithm 1 One-Depth Expected Value
function ODEV

p = 1 ▷ Probability of reaching current states
value = 0
PWFW = 0 ▷ Probability of winning-from-the-wall
SWFW = 0 ▷ Score of winning-from-the-wall
SWD = 0 ▷ Score of winning-by-a-discard about the

program
P (get tiles) ▷ Probability of getting the tiles
foreach i ∈ all players do ▷ Opponent players and program

foreach j ∈ all kinds of tiles do
PWFWi+ = P (j = winning)× P (get tiles = j)
SWFWi+ = HSWFW (i, j) × P (j = winning) ×

P (get tiles = j)
end for

end for
foreach j ∈ all kinds of tiles do

SWD+ = HS(program, j) × P (j = winning) ×
P (get tiles = j)

end for
foreach i ∈ opponents do

value− = EL(i, T ile)
end for
foreach i ∈ opponents do

value− = p × WAITING(Playeri) × PWFWi ×
SWFWi

p× = (1−WAITING(Playeri)× PWFWi)
value+ = p × (1 − FOLD(Playeri)) ×

PWFWprogram × SWD
foreach k ∈ all players do

if k ̸= i then
p× = (1− PWFWk × (1− Fold(Playeri)))

end if
end for

end for
value+ = p× SWFWprogram

value− = p× PED × fold value
if value ≦ 0 then

return FOLD
else

return NOT FOLD
end if

end function

function WAITING(Player)
if Player.waiting = Y ES then

return 1
else

return 0
end if

end function

function FOLD(Player)
if Player.Fold = Y ES then

return 1
else

return 0
end if

end function



TABLE VII. R ANK DISTRIBUTION

1st 2nd 3rd 4th Average rank
Our program 0.252 0.256 0.247 0.245 2.48±0.07
Mattari Mahjong 0.248 0.247 0.250 0.255 2.51±0.07
Mizukami et al. [5] 0.243 0.226 0.222 0.309 2.59±0.07

TABLE VIII. R ATE OF WINNING AND DISCARDING A WINNING TILE

FOR OPPONENTS

Winning rate Rate of discarding a winning tile for opponents
Our program 0.222 0.125
Mattari Mahjong 0.200 0.122
Mizukami et al. [5] 0.228 0.178

A. Evaluation with Mattari Mahjong

We compared our program against Mattari Mahjong14. To
the best of our knowledge, Mattari Mahjong is the strongest
among the publicly available Mahjong programs. The evalu-
ation function of Mattari Mahjong is created by the heuristic
combination of statics.

The length of a game is four rounds. The moves are
computed in a second. Our program plays with three Mattari
Majhong opponents. We used amatch game type, which is a
duplicate mode that generates the same walls and hands using
the random numbers, and allows us to compare the results of
Mattari Mahjong plays and that of our program. Our program
plays 1000 games. We use the average rank for evaluation.

Table VII shows the results. We calculated the confidence
interval of the average rank (p-value≤ 0.05) using bootstrap
resampling [8]. The difference between the average rank of
previous work [5] and that of our program is statistically
significant by welcht-test (p-value = 0.01). In the case of
Mattari Mahjong, the result of our program is better than
that of Mattari Mahjong, but the difference is not statically
significant (p-value= 0.29).

Table VIII shows the percentage of winning and the per-
centage of discarding a winning tile for opponents. The results
suggest the playing strength of our program is higher than that
of Mattari Mahjong.

B. Evaluation on Tenhou

To examine the playing strength of our program compared
to that of human players, we had our program play on the
internet Mahjong site called Tenhou. The rules are the same as
the case of Mattari Mahjong. Players can play games at various
tables depending on their skill level. There are four types
of tables, “Houou”, “Tokujou”, “Joukyuu” and “Ippan” tables
in descending order of playing strength. We use the average
rank (rating) for evaluation. The rating (R) has a negative
correlation to the average rank. The rating is computed as
follows:

R′ = R+ (50−Rank × 20 +
AveR−R

40
)× 0.2, (14)

where Rank is the rank of previous games.AveR is the
averageR of players in the table. The initalR is 1500. An
improvement in average rank by 0.1 roughly corresponds to
100 rating points

14http://homepage2.nifty.com/kmo2/

TABLE X. RATE OF WINNING AND DISCARDING A WINNING TILE FOR

OPPONENTS

Winning rate Rate of discarding a winning tile for opponents
Our program 0.245 0.131
Mizukami et al. [5] 0.256 0.148

Fig. 5. Fold state

There are two evaluation measures using the rating, the
stableandguaranteedrating15. The stable rating is the rating
computed by assuming that a player gets current results
forever. The guaranteed rating is the lower one-sided bounds
of the stable rating when the continuing results of games are
arbitrarily selected. This evaluation is used for comparing the
results of human players.

C. Results

Table IX shows the result. The difference between the av-
erage rank of previous work [5] and that of our program is not
statistically significant by welcht-test (p-value= 0.22). Our
program, however, improves the guaranteed rating. Table X
shows the percentage of the winning and rate of discarding a
winning tile for opponents.

D. Discussion

Our program has a tendency of folding when its hand is
weak and opponent players declare riichi. Figure 5 shows a
state in which our program’s decision is to fold. Our program
is waiting, but is hard to win. The probability that the red tile
is a wining tile for opponents is high. Our program folded and
discarded the eight balls.

Our program can play moves that are close to those of
human players. Figure 6 shows a state where our program is
sitting on the fence. The best move for completing a hand
would be 3 or 5 balls in this state. However, they are likely
to be winning tiles for opponents. Our program discarded the
seven balls. At the end of the round, our program was waiting.

Compared to our previous work, our program improves the
result against Mattari Mahjong. On the other hand, it does not
improve the result against human players. A possible reason
is that the winning ability of Mattai Mahjong is higher than
that of human players, and Monte Carlo moves are used more
often in the actual games. Folding is better played than before.

15http://totutohoku.b23.coreserver.jp/hp/SLtotu14.htm



TABLE IX. R ANK DISTRIBUTION

1st 2nd 3rd 4th Average rank Number of games Stable rating Guaranteed rating
Our program 0.241 0.281 0.248 0.23 2.46±0.04 2634 1718 1690
Mizukami et al. [5] 0.253 0.248 0.251 0.248 2.49±0.06 1441 1689 1610

Fig. 6. Fence-sitting state

There are bad moves in one-player Mahjong moves when
our program’s hand is hard to win. One-player Mahjong moves
are used to calculate the percentage of opponents who are
waiting or folding, so the improvement of those would make
the whole program better. Our program uses some heuristic
rules such as the one that if a player is waiting, he must declare
riichi. To decide good moves, we need to improve the model
for predicting whether a player declares riichi or not.

IX. RELATED WORK

Previously, we defined one-player Mahjong as a Mahjong
game where the number of players is one and players cannot
steal a tile [5]. We developed a one-player Mahjong player
using game records of human players, analyzed the difference
between four and one-player Mahjong and extended the one-
player Mahjong by filling the difference. The playing strength
of our program was higher than that of the average human
player. These results suggest that it is important for a program
to be able to fold and steal tiles in Mahjong. One of the
problems with this approach is that we needed to manually
tag data containing state where players fold. A large amount
of combination data of the player’s hands and situations of
a game is required. Another problem is that it is difficult to
collect required data for training. Yet another problem is that
the program cannot choosefence-sitting16 moves.

Wagatsuma et al. [9] proposed a Support Vector Regression
method for predicting the score of an opponent’s hand. It
extracts feature vectors from game records and predicts values
when players discard tiles. One problem with their method is
that it is not effectively trained due to some states where the
players are waiting in the training data set. Another problem
is that their estimation accuracy is only evaluated based on the
agreement rate between humans and the program.

Miki and Chikayama [10] proposed Mahjong players using
Monte Carlo tree search. Due to the enormous number of leaf

16Fence-sittingis a strategy in which a player tries to win or make a waiting
hand and, at the same time, avoid discarding a winning tile for opponents.

nodes for searching game trees of Mahjong, they use Monte
Carlo tree search that performs simulations. Opponents’ hands
and moves are randomly chosen in the simulation. Even though
the program does not use knowledge of Mahjong, its playing
strength is better than a naive program that only attempts to
reduce the number of tiles to win. The playing style of the
program differs from that of human players. The program often
steals a tile and tries to become waiting, since opponent players
do not win in the simulation.

There is a large body of previous work on computer
poker. The CFR+ method computes an approximate Nash
equilibrium strategy using the results of self-play and has
recently solved Heads-up limit hold’ em poker [1]. A Nash
equilibrium strategy will never lose in the long run. However,
it cannot identify and exploit weaknesses in its opponents’
play. Van der Kleij [2] used opponent modeling and Monte
Carlo tree search for exploitation. Opponent modeling focuses
on predicting moves and hands. He proposed a clustering
algorithm that clusters players based on their playing style
using game records. Aaron [3] proposed a method that updates
opponent models in the course of games for exploitation. The
program updates a hand rank distribution in the current game
state when the showdown occurs.

What makes opponent modeling difficult in Mahjong is
that a program usually plays a small number of games with
unspecified players. Naive opponent modeling that attempts to
predict specific opponents’ moves and hands is not suitable for
Mahjong. We therefore take a different approach for opponent
modeling that treats general players with abstracted hands.

X. CONCLUSION

In this paper, we have proposed a method that consid-
ers opponent models trained with game records and decides
moves using prediction results and Monte Calro simulation.
Experimental results show that the performance of the three
prediction models is higher than that of an expert player. Our
program achieves a good balance between folding and aiming
for a win like human players. On the large online Mahjong
site, Tenhou, our program has achieved a rating of 1718 in
2643 games, which is roughly the same as that of the average
players in the Joukyuu table.

In future work, we plan to take the scores of the players into
account. Our program chooses the same moves regardless of
the players’ scores. Expert players consider scores when they
make a hand and judge whether to fold or not against riichi.
These decisions have a great influence on the final rank and are
essential in improving playing strength. The value calculated
in a simulation needs to be converted into a different value
that reflects the result of the game. If the model predicts a
rank distribution using current scores, an expected rank can
be used as a reward of simulation.
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