Learning Embeddings for Transitive Verb Disambiguation by Implicit Tensor Factorization

Kazuma Hashimoto
Yoshimasa Tsuruoka

University of Tokyo
Composition: Words \rightarrow Phrases

- Composition models
 - Word embeddings \rightarrow phrase embeddings
- Transitive verbs are good test beds
 - Interaction with their arguments is important!
 - i.e., transitive verb sense disambiguation
 Embeddings of Transitive Verb Phrases

- **Tensor-based approaches** (Grefenstette et al., 2011; Van de Cruys et al., 2013; Milajevs et al., 2014)
 - Effective in transitive verb disambiguation
 - Composition functions
 - **Not learned**, but computed in postprocessing

- **Joint learning approach** (Hashimoto et al., 2014)
 - Word embeddings and composition functions
 - **Jointly learned** from scratch (*w/o* word2vec!)
 - Interaction between verbs and their arguments
 - **Very weak**
An Implicit Tensor Factorization Method

- Bridging the gap between tensor-based and joint learning approaches

Joint learning approach

Tensor-based approach

Implicit factorization method (Levy and Goldberg, 2014)

Implicit tensor factorization (this work)

State-of-the-art result on a verb sense disambiguation task!
Today’s Agenda

1. Introduction

2. Related Work
 – Joint learning and tensor-based approaches

3. Learning Embeddings for Transitive Verb Phrases
 – The Role of Prepositional Adjuncts
 – Implicit Tensor Factorization

4. Experiments and Results

5. Summary
Approaches to Phrase Embeddings

- Element-wise addition/multiplication (Mitchell and Lapata, 2010)
 - $v(\text{sentence}) = \sum_i v(w_i)$

- Recursive autoencoders
 - Using parse trees (Socher et al., 2011; Hermann and Blunsom, 2013)
 - $v(\text{parent}) = f(v(\text{left child}), v(\text{right child}))$

- Tensor/matrix-based methods
 - $v(\text{adj noun}) = M(\text{adj})v(\text{noun})$ (Baroni and Zamparelli, 2010)
 - $M(\text{verb}) = \sum_{i,j} v(\text{subj}_i)^T v(\text{obj}_j)$ (Grefenstette and Sadrzadeh, 2011)
 - $M(\text{subj, verb, obj}) = \{v(\text{subj})^T v(\text{obj})\} \ast M(\text{verb})$
 - $v(\text{subj, verb, obj}) = \{M(\text{verb})v(\text{obj})\} \ast v(\text{subj})$ (Kartsaklis et al., 2012)
Which Word Embeddings are the Best?

- Co-occurrence matrix + SVD, NMF, etc.
- C&W (Collobert and Weston, 2011)
- RNNLM (Mikolov et al., 2013)
- SkipGram/CBOW (Mikolov et al., 2013)
- vLBL/ivLBL (Mnih and Kavukcuoglu, 2013)
- Dependency-based SkipGram (Levy and Goldberg, 2014)
- Glove (Pennington et al., 2014)

Which word embeddings should we use for which composition methods? 😞

Joint leaning
Co-Occurrence Statistics of Phrases

- Word co-occurrence statistics → word embeddings
- How about phrase embeddings?
 - Phrase co-occurrence statistics!

The importer **made payment** in his own domestic currency

The businessman **pays his monthly fee** in yen

Similar contexts

Similar meanings?
1. Introduction

2. Related Work
 – Joint learning and tensor-based approaches

3. Learning Embeddings for Transitive Verb Phrases
 – The Role of Prepositional Adjuncts
 – Implicit Tensor Factorization

4. Experiments and Results

5. Summary
How to Identify Phrase-Word Relations?

- Using predicate-argument structures (Hashimoto et al., 2014)
 - *Enju* parser (Miyao et al., 2008)
- Analyzes relations between phrases and words

Example sentence: "The importer made payment in his own domestic currency."
Training Data from Large Corpora

- Focusing on the role of **prepositional adjuncts**
 - Prepositional adjuncts *complement meanings* of verb phrases → should be useful

Parse

English Wikipedia, BNC, etc.

Simplification

How to model the relationships between predicates and arguments?
Today’s Agenda

1. Introduction
2. Related Work
 – Joint learning and tensor-based approaches
3. Learning Embeddings for Transitive Verb Phrases
 – The Role of Prepositional Adjuncts
 – Implicit Tensor Factorization
4. Experiments and Results
5. Summary
Tensor-Based Approaches

- Tensor/matrix-based approaches (Noun: vector)
 - Transitive verb: matrix

\[PMI(\text{importer, make, payment}) = 0.31 \]

(Grefenstette and Sadrzadeh, 2011; Van de Cruys et al., 2013)
Implicit Tensor Factorization (1)

- Parameterizing
 - **Predicate matrices** and argument embeddings

 - Similar to an implicit matrix factorization method for learning word embeddings (Levy and Goldberg, 2014)
Implicit Tensor Factorization (2)

• Calculating plausibility scores
 – Using predicate matrices & argument embeddings

\[T(p, a_1, a_2) = \text{Given} \]

\[a_1 \quad p \quad a_2 \]

31/07/2015 CVSC2015 in Beijing, China
Implicit Tensor Factorization (3)

- Learning model parameters
 - Using plausibility judgment task
 - Observed tuple: \((p, a_1, a_2)\)
 - Collapsed tuples: \((p', a_1, a_2), (p, a_1', a_2), (p, a_1, a_2')\)
 - Negative sampling (Mikolov et al., 2013)

Cost function

\[
\begin{align*}
&- \log \sigma(T(p, a_1, a_2)) - \log(1 - \sigma(T(p', a_1, a_2))) \\
&- \log(1 - \sigma(T(p, a_1', a_2))) \\
&- \log(1 - \sigma(T(p, a_1, a_2')))
\end{align*}
\]
Example

- Discriminating between observed and collapsed ones

\[
\begin{array}{ccc}
\text{predicate} & \text{argument 1} & \text{argument 2} \\
\text{make} & \text{importer} & \text{payment} \\
\text{in} & \text{importer make payment} & \text{currency}
\end{array}
\]

\((p, a_1, a_2) = (\text{in, importer make payment, currency}) \)
\((p', a_1, a_2) = (\text{on, importer make payment, currency}) \)
\((p, a_1', a_2) = (\text{in, child eat pizza, currency}) \)
\((p, a_1, a_2') = (\text{in, importer make payment, furniture}) \)

\[
\begin{align*}
\text{Larger:} & - \log \sigma(T(p, a_1, a_2)) - \log(1 - \sigma(T(p', a_1, a_2))) \\
\text{Smaller:} & - \log(1 - \sigma(T(p, a_1', a_2))) - \log(1 - \sigma(T(p, a_1, a_2')))
\end{align*}
\]

31/07/2015 CVSC2015 in Beijing, China
How to Compute SVO Embeddings?

- Two methods:
 - (a) assigning a vector to each SVO tuple
 - (b) composing SVO embeddings

 - Parameterized matrices
 - Parameterized vectors
 - Composed vectors

- Parameterized matrices
 - Composed vectors

(Kartsaklis et al., 2012)
Today’s Agenda

1. Introduction
2. Related Work
 – Joint learning and tensor-based approaches
3. Learning Embeddings for Transitive Verb Phrases
 – The Role of Prepositional Adjuncts
 – Implicit Tensor Factorization
4. Experiments and Results
5. Summary
Experimental Settings

• Training corpus (English Wikipedia)
 – SVO data: 23.6 million instances
 – SVO-preposition-noun data: 17.3 million instances

• Parameter initialization
 – Random values

• Optimization
 – Mini-batch *AdaGrad* (Duchi et al., 2011)

• Embedding dimensionality
 – 50

How do we tune the parameters?
For more details, please come to see the poster session!
Examples of Learned SVO Embeddings

- Composing SVO embeddings

<table>
<thead>
<tr>
<th>make money</th>
<th>Nearest neighbor verb-object phrases</th>
</tr>
</thead>
<tbody>
<tr>
<td>make money</td>
<td>make cash, make dollar, make profit, earn baht, earn pound, earn billion</td>
</tr>
<tr>
<td>make payment</td>
<td>make loan, make repayment, pay fine, pay amount, pay surcharge, pay reimbursement</td>
</tr>
<tr>
<td>make use (of)</td>
<td>use number, use concept, use approach, use method, use model, use one</td>
</tr>
</tbody>
</table>

Capturing the changes of the meaning of “make”
Multiple Meanings in Verb Matrices

- The learned verb matrices capture multiple meanings

<table>
<thead>
<tr>
<th>verb</th>
<th>nearest neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>run</td>
<td></td>
</tr>
<tr>
<td>27th col.</td>
<td>operate, execute, insert, hold, grid, produce, add, assume, manage, render</td>
</tr>
<tr>
<td>34th row</td>
<td>release, operate, create, override, govern, oversee, distribute, host, organize</td>
</tr>
<tr>
<td>all</td>
<td>operate, start, manage, own, launch, continue, establish, open, maintain</td>
</tr>
<tr>
<td>encode</td>
<td></td>
</tr>
<tr>
<td>28th row</td>
<td>denature, transfect, phosphorylate, polymerize, subtend, acid</td>
</tr>
<tr>
<td>39th row</td>
<td>format, store, decode, embed, concatenate, encrypt, memorize</td>
</tr>
<tr>
<td>all</td>
<td>concatenate, permute, phosphorylate, quantize, composite, transfect, transduce</td>
</tr>
</tbody>
</table>
Measuring semantic similarities of verb pairs taking the same subjects and objects \cite{Grefenstette and Sadrzadeh, 2011}

- Evaluation: Speaman’s rank correlation between similarity scores and human ratings

<table>
<thead>
<tr>
<th>Verb pair with subj&obj</th>
<th>Human rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>student \textit{write} name</td>
<td>7</td>
</tr>
<tr>
<td>student \textit{spell} name</td>
<td></td>
</tr>
<tr>
<td>child \textit{show} sign</td>
<td>6</td>
</tr>
<tr>
<td>child \textit{express} sign</td>
<td></td>
</tr>
<tr>
<td>system \textit{meet} criterion</td>
<td>1</td>
</tr>
<tr>
<td>system \textit{visit} criterion</td>
<td></td>
</tr>
</tbody>
</table>
Results

- State-of-the-art results on the disambiguation task
 - Prepositional adjuncts improve the results

<table>
<thead>
<tr>
<th>Method</th>
<th>Spearman’s rank correlation score</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work (only verb data)</td>
<td>0.480</td>
</tr>
<tr>
<td>This work (verb and preposition data)</td>
<td>0.614</td>
</tr>
<tr>
<td>Tensor-based approach (Milajevs et al., 2014)</td>
<td>0.456</td>
</tr>
<tr>
<td>Joint learning approach (Hashimoto et al., 2014)</td>
<td>0.422</td>
</tr>
</tbody>
</table>

For more details, please come to see the poster session!
Today’s Agenda

1. Introduction
2. Related Work
 – Joint learning and tensor-based approaches
3. Learning Embeddings for Transitive Verb Phrases
 – The Role of Prepositional Adjuncts
 – Implicit Tensor Factorization
4. Experiments and Results
5. Summary
Summary

• Word and phrase embeddings are jointly learned using large corpora parsed by syntactic parsers
 – Tensor-based method is suitable for verb sense disambiguation
 – Adjuncts are useful in learning verb phrases

• Future directions:
 – improving the embedding methods
 – applying them to real-world NLP applications
 • What kind of information should be captured?