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Abstract—Predicting opponents’ moves and hidden states is opponent models for predicting three abstracted elements of an
important in imperfect information games. This paper describes  opponent, namelyvaiting, winning tilesand winning scores
a method for building a Mahjong program that models opponent  First, we train the three prediction models using game records
players and performs Monte ’Carlo simulation with the models.  of expert human players. We then build a computer Mahjong
We decompose an opponent's play into three elements, namely, javer that determines its move by using these prediction mod-
waiting, winning files and winning scores and train prediction o "nd Monte Carlo simulation. We present the performance

models for those elements using game records of expert human f inst h | d tate-of-th "
players. Opponents’ moves in the Monte Carlo simulations are Or our program against human players and a state-of-the-ar

determined based on the probability distributions of the opponent ~ Program.

g}ggf;srﬁ V\(/)en h:"goe‘;’jgjratgﬁnah: R/'lzm‘)% ;trsei:‘gth_rg;Lhoi,fes_‘rjr']téng This paper is organized as follows. Section Il describes
program has achieved a rating of 1718, which is significantly basic rules and terms Of Mahjong. Sectlor_1 Il presents what
higher than that of the average human player. we cqll one-pllayer Mahjong moves. Section IV, V _and VI
describe prediction models about waiting, winning tiles and
winning scores. Section VIl describes how to decide moves
using prediction results and Monte Carlo simulation. Section
In artificial intelligence research, imperfect information VIII shows some experimental results. Section IX describes
games provide challenging and important research questiomelated work. Finally, the conclusion is presented in section
since such games require one to address common problems irxa
real world, in which players deal with hidden information and
stochasticity. Mahjong is.a traditional imperfect informa’gion II. BASIC RULES AND TERMS OFJAPANESE MAHJONG
game played in many Asian countries. Among many variants
of Mahjong, we focus on Japanese Mahjong, which is one This section describes basic rules and terms of Japanese
of the most popular table games in Japan. From an AMahjong (which we simply call Mahjong in what follows).
research point of view, Japanese Mahjong is a challenginlylahjong is a table game in which four players start with a
game because (a) it is played with more than two playersscore of 25,000 points and compete to achieve the highest
(b) it is an imperfect information game, and (c) the numberscore. One game of Mahjong usually consists of four or eight
of information sets is much bigger than those of popular cardounds. A player can win a round by completing a winning
games such as poker. hand consisting of 14iles, and get a score according to the
. , hand. At each turn in a round, a player picks up a tile from
A two-player version of Texas Hold’em, one of the moSt o \ya|| (a set of tiles shared by all players), or picks up a

. . oS 8ile discarded by another player, which is callsaling He
computing of an approximate Nash equilibrium strategy [1].\hen, giscards a tile or declares a win. When a player picks up a

However, this type of approach is not always feasible since thg;inning tile himself, it is calledvinning-from-the-walland the

Sother three players share the responsibility of paying out the

can be prohibitive in certain games. Another approach foggqre “a player can call owbn when one of the other players
building computer players for imperfect information gamesjscards a winning tile. It is calledinning-by-a-discardand

is using opponent modelsFor opponent modeling, Van der yhe pjayer who has discarded the tile pays the whole score to
Kleij [2] clusters players based on their playing style usingine winner.

game records. A hand rank distribution is updated in the course
of games [3]. In computer Skat, Buro et al. [4] proposed a Mabhjong is played using 136 tiles, comprising 34 distinct
method that estimates an arbitrary hypothetical world wherkinds with four of each kind. One hundred and eight of them
a player decides moves in the current position using gamare numbertiles. Each has a number from one to nine and
records. The hypothetical world consists of distributing cardone of threesuits (numbers balls, and stickg. The rest are
between the unobserved hands of opponents. As the result bbnor tiles with no particular ordering. Honor tiles comprise
training on data from average human players and inference onind tiles(east, south, west and north) agéigon tiles(white,
high-level features of worlds, their Skat-playing program playsgreen and red).

at the level of experts human player.

I. INTRODUCTION

Each player usually tries to make a hand of faets
In this work, we build a computer Mahjong player using (meldd and one pair of tiles. There are two kinds of set, a



. . . . . TABLE I. FEATURES OF WAITING PREDICTION
pung three identical tiles, and ehow three consecutive tiles

of the same suit. Features Number of features
Riichi 1
i i i i Number of revealed melds and discarded tiles 5x19 =95
Here, we _descrlbe some basic Mahjong terms particularly Nimber of Tovealod Mol o e PR
relevant to this work. Number of revealed melds and changed files 5% 19 =95
Number of revealed melds and last discarded tiles 5 x 37 = 185
Waitin Kinds of revealed melds and discarded tiles 136 x 37 = 5032
g ) . . ) ) Discardbonus tile$and kinds of bonus tiles 34
A player iswaiting if his hand needs only one tile Discard red bonus tilés 1
to become Complete Combination of two discarded tiles 37 x 37 = 1369
Riichi

A player can declareiichi when he is waiting

with no melds made by stealing. Once a playertable” at the internet Mahjong site called Tenhoas the
declares riichi, he must discard every tile he pickstraining datd. Only the top 0.1% of the players are allowed to
up except when it is a winning tile. play in the Houou table, so we consider the quality of those

Folding . _ _ game records to be that of expert human players.
A player folds if he gives up to win and only ) )
tries to avoid discarding a winning tile for other ~ For each state in the game records, we generate a binary

players. Unlike poker, players do not explicitly labelindicating whether the opponent’s hand is waiting or not,
declare a fo|d7 and thus fo|d|ng is not an action and a feature vector from the other players’ pOintS of view. The
but a Strategy in Mahjong_ total number of states is aboli77 x 107

I1l. ONE-PLAYER MAHJONG MOVES B. Training the model

This section gives a brief explanation of what we call one- We use logistic regression to build a prediction model.
player Mahjong moves, which play an important role in ourThe probability that an opponent is waiting in a given state
Monte Carlo simulation. First, we define one-player Mahjongis computed as follows:
as a game of Mahjong in which there is only one player. The 1
goal of the player in a one-player Mahjong game is to complete P(p = waiting) = T
his hand. 1+ exp (—w'xp)

In our previous work [5], we developed a computer pro-Where x, is a feature vector representing the information
gram for one-player Mahjong by supervised machine learning?Pout an opponent player and w is the weight vector for
Given a set of 14 tiles, the program can select the move (i.dhe features. Table | shows the features used in the model.
tile) that is most likely to lead to quick completion of the Examples of_the features include kinds of tiles an opponent
hand. Always playing such moves in a standard (four_p|ayer&?yer has discarded and the number of revealed melds and
Mahjong game is not a good strategy because you never makgns. The total number of features is 6,888.

a meld _by steallng. We therefore extended the program with  The training of the prediction model is performed by
a mach|_ne Iearm_ng-based component that makes lUdgmeWﬁinimizing the following objective function:
on stealing. In this paper, we call the moves chosen by this
extended prograrone-player Mahjong moves N 2
Alw|
L(w) = —Z(ciP(Xi)—l-(l—ci)(l—P(Xi))—l-T,

i=1

(1)

(2)

Playing such one-player Mahjong moves still does not
result in strong Mahjong play, because you never fold and
often discard a winning tile for other players. In this paper, wewhere IV is the number of training exampleX; is the i-
address this problem by combining one-player Mahjong move training sampleg; is the binary (1 or 0) label indicating
with moves selected by Monte Carlo simulations, using threavhether the opponent is waiting or not andis the regu-
prediction models for opponent modeling. The main idea is tdarization term, which is used for alleviating the problem of
achieve a good balance between quick completion of a han@verfitting to the training data. We set the regularization term
and minimizing the expected loss from discarding a winning? to 0.01.
tile for other players. In the following sections, we describe

our prediction models in detail, We use the FOBOS algorithm [6] to train the weight vector.

The weights are updated by using Adagrad [7]. The update

equation is as follows:
IV. PREDICTION OF WAITING

I "9t,i
This section describes how to train the model that predicts Wit1,i = We,i 1 t 5 (3)
whether an opponent is waiting or not. In Mahjong, a player VET Zk:lgm

poses no immediate risk to other players, if he is not wait
ing. Accurate prediction of waiting is therefore important in
building a strong Mahjong program.

‘where w; ; is the i-th elements of the weight vector, is
the learning rate¢ is the number of updates angis the
(stochastic) gradient of the objective function. We set the

o learning raten to 0.01.
A. Game records for training

. . . . http://tenhou.net/
~ We take a supervised machine learning approach for build- 2the game records are the records of the games played between 20/02/2009
ing the prediction model. We use game records in the “Houownd 31/12/2013



TABLE II. E VALUATION OF WAITING PREDICTION TABLE IIl. F EATURES OF WINNING TILE PREDICTION

p|ayer AUC Features Number of features
Number of tiles a player can count 5 x 34 =170
Expert player 0.778 Safety tile§ 34
Prediction model 0.777 Changed tiles: times 3 x 34 =102
. . Bonus tiles 34
-Discarded tiles 0.772 The number of turns and tiles 18 x 37 = 666
_ Tiles a player discard when a player declares riichi 37
Number of revealed melds 0.770 Kinds of revealed melds and discarded tiles 136 * 37 = 5032
Combination of kinds of revealed melds 136 = 136 = 18496
Combination of discarded tiles and whether changed tiles or n®&7 x 37 x 2 x 2 = 5476
Discarded tiles and changed tiles 37 X 37 = 1369

C. Accuracy of prediction
TABLE IV. E VALUATION OF WINNING TILE PREDICTION

We examine the accuracy of the prediction model described

: . . P Evaluati |
in the previous by using the Area Under the Curve (AUC anert | v u;;izva ue
as the measure for evaluation. We created the test data by Xpert player :

. Prediction model 0.676
randomly selecting 100 states from the game records (only -Revealed melds 0.675
one state has been sampled from each round). We did not _Discarded tiles 0.673
include the states where the target opponent player has already Random 0.502

declared riichi since the waiting prediction is straight-forward
in such states.

Table Il shows the evaluation results. The “Expert player”S€ction. The objective function is

in the table is an expert human player who is allowed to play N Alw]
in the Houou table. The results show that our prediction model I(w) = — Z(cip(xi) +(1—¢)(1—=P(X;)) + =, (4)
has roughly the same prediction ability as the expert player. i—1 N

We also show the performance achieved by the prediCtiOUVhereN

. ! is the number of training exampleX; is the i-
models that do not use a certain type of features, just beIO\{sf1 trainin 9 pleX; !

g sampleg¢; is the binary (1 or 0) label indicating

the*Prediction model”. whether the tile is a winning tile or not andis the regular-
ization term. We usé;-regularization to achieve sparsity in
V. PREDICTION OF WINNING TILES the weight vector.

This section describes how to train the model that predicts We used FOBOS and Adagrad for optimization. We set the
opponents’ winning tiles. In Mahjong, the player who haslearning ratep to 0.01 and the regularization termto 0.01.
discarded the opponents’ winning tile pays the whole score
to the opponent, i.e., it is very damaging to the player. ItC. Accuracy of prediction

is therefore important for a program to be able to predict Evaluation of the model for predicting winning tiles should

opponents’ winning tiles accurately. reflect the rules of Mahjong. We need to predict all winning
tiles for opponents accurately since discarding any of them
A. Game records for training will lead to the losing of the round. We therefore perform the

Wi h d h d ib devaluation of the models as follows. The tiles that a player
e use the same game records as the ones describedyls 5ra grranged in ascending order of probability of being a

Section V. For each kind of tiles, we generate a binary,inning tile. The evaluation value is computed as follows:
value indicating whether it is a winning tile or not, and a

feature vector representing the information available to the ] Clear;
other players. The total number of states is abiot x 107. Bvaluationvalue = ) | ——rr (5)
=1 K2 3

N

whereN is the number of test sampleSjear; is the smallest

rank among the winning tilesiT; (All T'iles) is the number of
In general, there are one or more winning tiles for anthe kinds of the tiles the player has aRdr’; (Winning Tiles)

opponent. We therefore address this task as a binary predictias the number of the kinds of the winning tiles.

(i.e. a winning tile or not) problem for each kind of the

Mabhjong tiles, and build 34 prediction models using logistic

regression.

B. Training for predicting winning tiles

We created the test data by randomly selecting 100 states
from the game records (only one state has been sampled from
each round). Table IV shows the evaluation resukandom

Table Il shows the features used in the model. Exampless a player that discards tiles randomly. The results show that
of the features include the number of each kind of tiles andhe performance of the prediction model is considerably higher
the tiles the opponent has already discarded. The total numb#ran that of Random but is lower than that of an expert player.
of features is 31,416.

We train the prediction models in the same fashion as we
did for the waiting prediction models described in the previous ~This section describes how to train a model that predicts
the score that the player has to pay if the tile he discards is
3A player discards the tile that has existed in his hand a winning tile for an opponent. The model for the case of

4If a player wins withbonus tiles the score increases according to the winning-from-the-wall is trained analogously.
number of those.

5We use marked red number 5 tiles that also count as bonus tiles. 6The tiles a player has already discarded.

VI. PREDICTION OF SCORES




TABLE VI. E VALUATION OF SCORE PREDICTION
My hand
Player Mean square error
Prediction model 0.37
-Revealed Melds 0.38 ’ Tile; ‘ ’ Tile, ‘ «== | Virtual fold
-Revealed fan value 0.38
Expert player 0.40

’ sim(Tile;) ‘ ’ sim(Tile;) ‘ ’ Fold value ‘

A. Game records for trainin
9 Fig. 1. Overview of Monte Carlo moves

For each state where a player has won in the game records,
we generate a training sample by using the score and creating
a feature vector representing the information available to the
other players. The total number of states is atio9® x 107. ! ! -
[win check === [t | Win

[ Decide one-player mahjong moves | [ change two parameters, fold and waiting |

B. Training for predicting scores

Discard a tile and l m
In Mahjong, the score of a hand basically increases ex- (rtun ol e (oo e g ]

ponentially according to thdan’ value of the hand. We win
therefore build a linear regression model that predicts the

natural logarithm of an actual score in the training data. oot of pregram o
Table V shows the features used in the model. Examples of the ”
features include the fan valqe of the revealed melds and th,gzlg_ 2. Flowchart of each player
number of revealed bonus tiles. The total number of features
is 26,889.

The model predicts S (Hand Score) in a given state as VIlI. M ONTE CARLO MOVES USING OPPONENT MODELING
follows:

T This section describes how our program determines its
HS =w'x, ®)  move (action) by using the prediction models and performing
Monte Carlo simulations. The evaluation results given in the
previous sections demonstrate that the performance of the
prediction models for the three kinds of states of opponents’
The training of the prediction model is performed by hands is comparable to that of expert players. We use the

wherex is a feature vector and is the weight vector for the
features.

minimizing the following objective function: models to estimate an expected value that our program pays.
N 2 We defineL P (Losing Probability) as the probability that
o | Alw] . S oo o - .
L(w) = Z(HSi —¢)+ N (7)  an opponenp is waiting andT'ile is the winning tile for him
i=1 and it is computed as follows:
where N is the number of training exampleg]S; is the LP(p,Tile) = P(p = waiting) x P(Tile = winning),

predicted valueg; is the natural logarithm of the actual game (8)
score and\ is the regularization term. When using this model,
the output of the model is exponentiated to obtain the actuakherep is an opponent player ariffile is the tile the program
score in the original scale. We use FOBOS and Adagrad teiscards.EL (Expected Loss) is LP multiplied by .S and
train the weight vector. We set the learning rateo 0.01 and  computed as follows:
the regularization term\ to 0.01.

EL(p,Tile) = LP(p,Tile) x HS(p, Tile). (9)

C. Accuracy of prediction The score that the program is expected to obtain by discarding

We evaluated the model using mean square error betweéhfile is computed as
the predicted value and the actual score. We created the test Score(Tile) = Sim(Tile)x
data by randomly selecting 100 states from the game records o

(only one state has been sampled from each round). We give H (1—-LP(p,Tile))—

human subjects information about the tiles the players have pEopponents (20)
discarded and who wins. The evaluation results in Table VI Z EL(p, Tile)

show that the performance of the prediction model is even ’ ’

higher than that of an expert player. peopponents

where Sim(Tile) is a game score computed using Monte
8Tiles are three adjacent numerical to safety tiles. Calro simulation and the Secon.d term i.s the expected loss
9A hand consisting of only 2 through 8 number tiles. the program has to pay when d_ISCE_lrd_IYfgle. The program
10pragons tiles, a player's own wind tiles and wind of the round tiles. ~ calculatesScore(T'ile) for each tile in its hand and selects
1A hand consisting of only one suit and honor tiles the tile that has the highest score. We call the moves that are
12 hand consisting of only pungs and a pair. chosen in this wayonte Carlo moves

“Fan is the sum of the values of winning hands.



TABLE V. FEATURES OF SCORE PREDICTION

Features Number of features
Riichi and dealer 2x2=4
Revealed fan value and countable bonus tiles 7x 8 =56
Riichi or the number of revealed melds and revealed a fan value and countable bonus tiles 3X7x8=168
Kinds of revealed melds and revealed a fan value and countable bonus tiles 136 X 7 x 8 = 7616
Combination of two kinds of revealed melds 136 x 136 = 18496
The number of revealed melds and revealed a fan value and countable bonus tiles 5 X 7x8=280
Riichi and discarded tiles is sfgr all simples 3xX2x2=12
Steal non value hondtiles and steal value honor tiles, the number of revealed melds is zero 3
Discarded tiles is bonus tiles, one or two adjacent numerical, same suit, no relation 5
A hand can create all simples and bonus tiles and countable bonus tiles 2X2x8=32
A hand can create fludh(honitsu and tinitsu) revealed a fan value and bonus tiles is same s@itx 7 x 2 x 2 = 140
A hand can create all punifand revealed a fan value and bonus tiles is same suit 5X7x2="170
Number of revealed melds of dragon tiles 3
Number of revealed melds of wind tiles 4
Now we describe how we actually compute the values of o

Sim(Tile) by Monte Carlo simulation. Figure 2 shows two 008

flowcharts representing what are done in the program’s and the z

opponents’ turns. In the program’s turns, the program plays 3 oo
1 ) H .0 e RiiC i

a one-player Mahjong move. In opponents’ turns, they win 2o R

or declare riichi based on some probability distributions. The 002

discarded tiles are computed by assuming that the opponent o

players pick up a tile from the wall and simply discard it 12345678 9101112151415161718

right away. We carry out the same number of simulations for Number of turns

each tile. The same random numbers are used for controlling
opponents’ moves and for generating the wall to minimize th-y 3 probability of waiting player of each turn
effect of randomness in simulation.

A. Opponents’ turn simulation. The percentage of stealing is 35%, which is the

. . average of expert players.
In opponents’ turns, they decide their moves based on 9 pert play

a probability distribution without considering their hands. =~ Here we describe the folding parameter. If players do not
Instead, each of them has two binary parameters indicatinfpld, players who declare riichi win easily. This is not a
whether he is waiting or folding. realistic simulation. To solve this problem, we make opponent

. . . layers decide to fold.
First, we describe the waiting parameter. An opponent carq y !

win only when he has been waiting and picked up a winning  First, we describe how to decide whether to fold or not
tile from the wall or someone has discarded a winning tile forusing a probability. The biggest difference between one-player
him. The initial value of the waiting parameter is a set to theMahjong moves and those in game records is folding. The
waiting probability predicted by the model given in section IV F'P (Folding Probability) is calculated using game records
in current states. The waiting parameter during the simulatio@nd one-player Mahjong moves as follows:

is determined when an opponent player picks up a tile based di f ferentsizuati

on another probability distribution. We call the probability FP(situation) = TR, (12)
WPET (Waiting Probability at Fach Turn) and calculate countsituation

it using one-player Mahjong moves in advance. where situation is a combination of whether the program

) ) is waiting or not and the number of opponent players who
We describe how to calculaté’ PET'. First, we generate p5ve stolen tiles or declared riichili f ferent siruation 1S

a wall. For _each turn, a player discards a tile ba}sed ONn ON&pe percentage that top three one-player Mahjong moves are
player Mahjong moves. The opponent players pick up a tilgjifrerent from those undevituation, andcount sipuation is the

from the wall and discard it. If a player becomes waiting, thenmper ofsituation. The total number of situations fs 739.
game is over and the turn is recorded. We calcultt® ET  The total number of states is abous x 108
as follows: '

BW, We describe how to move for folding. Folding in Mahjong
WPET; = TZ’ (11)  differs from that of poker. A player does not need to declare
i a fold, but he discards tiles. In real games, if a player decides

wherei is the turn numberBW; (Becomes W aiting) is the  to fold, he can usually avoid discarding winning tiles for the
number of times the player becomes waiting in the turn anedpponents. To emulate the folding situation, a player picks up
R; (Reach) is the number of times the player reaches the turna tile and discards no tiles as fold in the simulation. We call
these movegirtual folding. The other players cannot call out

There are two kinds of waiting, riichi and stealing. In the ron

case of riichi, a player cannot steal a tile. We calcul&t® ET
by playing 106 games. Figure 3 shows the result. The kind of ~ The initial value of the folding parameter is set MOT
waiting is decided based on the percentage of stealing befof@OLD. The folding parameter is determined when an opponent
the simulation is carried out and is not changed during thelayer picks up a tile.
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Fig. 4. Agreement rate of each threshold

B. Program’s turn

Our program decides moves based on one-player Mahjong
moves during the simulation. However, one-player Mahjong
moves always aim to win without folding, which results in
an unrealistic simulation. To solve this problem, our pro-
gram decides whether to do a virtual fold or not based
on a ODEV (One-Depth Expected Value). ODEV is an
expected value that is calculated by searching game trees
without Monte Carlo simulation until the program’s next turn.
An expected value floldvalue) and the probability of the
exhaustive draW (PED) can be calculated using virtual
folds. The probability distribution of picking up tiles and
opponents’ two parameters are fixed while calculating this
value. Algorithm 1 describes how to comput®D E'V. The

parameters of this algorithm are the same as those calculated

at the root node.

C. Swiching from one-player Mahjong moves to Monte Carlo
moves

In opening states, Monte Carlo moves tend to play bad
moves, because the time that can be used for simulation is
short and every player needs many moves to win. One-player
Mahjong moves are more suitable for opening states. We
switch from one-player Mahjong moves to Monte Calro moves
as follows:

foldvalue
otherwise

Monte Carlo moves

. > s EL(p,Tile)
{ One—patyer Mangong moves i f (pEezponents PLO.TiE)

(13)
where « is the threshold. The value af was set so that it

maximizes the agreement rate between the moves selected by

the program and the ones in the game records.

We used 10,000 states as the evaluation data. Monte Carlo

moves are always computed in a second. Figure 4 shows the

result. Rank is the percentage that the topcandidate moves
match those in game records. We seto 0.2 based on the
result.

VIIl. EXPERIMENTS

O o8

g, 17

in/ _

§ 0a | —“a":l Algorithm 1 One-Depth Expected Value
2 Ranks function ODEV

p=1 > Probability of reaching current states

value = 0

PWFW =0 > Probability of winning-from-the-wall

SWFW =0 > Score of winning-from-the-wall

SWD =0 > Score of winning-by-a-discard about the
program

P(get tiles) > Probability of getting the tiles

foreach i € all players do > Opponent players and program
foreach j € all kinds of tiles do
PWFW;+ = P(j = winning) x P(gettiles = j)
SWFW;+ = HSwrw(i,j) X P(j = winning) X

P(gettiles = j)

end for
end for
foreach j € all kinds of tiles do
SWD+ = HS(program,j) x P(j = winning) X

P(get tiles = 7)

end for
foreach i € opponents do
value— = EL(i, Tile)

end for
foreach i € opponents do
value— = p x WAITING(Player;) x PWFW,; x
SWFW;

px = (1 = WAITING(Player;) x PWFW;)
value+ = p x (1 — FOLD(Player;)) X

PW FWyrogram X SWD

foreach k € all players do

if k+#ithen
px = (1 — PWFW,, x (1 — Fold(Player;)))
end if
end for
end for

value+ = p X SWEWprogram
value— = p x PED X foldvalue
if value < 0 then

return FOLD
else

return NOT FOLD
end if

end function

function WAITING(Player)

if Player.waiting =Y ES then
return 1

else
return O

end if

end function

function FOLD(Player)

if Player.Fold =Y ES then
return 1

else
return O

end if

end function

In this section, we present evaluation results on the perfor-
mance of our program.

13No player wins after taking all tiles from the wall.



TABLE VII. R ANK DISTRIBUTION TABLE X. RATE OF WINNING AND DISCARDING A WINNING TILE FOR

OPPONENTS
1st 2nd 3rd 4th  Average rank
Our program 0.252  0.256 0.247  0.245 2.480.07 Winning rate  Rate of discarding a winning tile for opponents
Mattari Mahjong 0.248 0.247 0.250 0.255 2.5£0.07 Our program 0.245 0.131
Mizukami et al. [5] | 0.243  0.226  0.222  0.309 2.580.07 Mizukami et al. [5] 0.256 0.148
TABLE VIII. R ATE OF WINNING AND DISCARDING A WINNING TILE

FOR OPPONENTS

Winning rate  Rate of discarding a winning tile for opponents

Our program 0.222 0.125
Mattari Mahjong 0.200 0.122
Mizukami et al. [5] 0.228 0.178

A. Evaluation with Mattari Mahjong

We compared our program against Mattari Mahjdngo
the best of our knowledge, Mattari Mahjong is the strongest
among the publicly available Mahjong programs. The evalu-
ation function of Mattari Mahjong is created by the heuristic
combination of statics.

The length of a game is four rounds. The moves arerig. 5. Fold state

computed in a second. Our program plays with three Mattari

Majhong opponents. We usednaatch game typewhich is a ) ) )

duplicate mode that generates the same walls and hands using There are two evaluation measures using the rating, the

the random numbers, and allows us to compare the results §fableand guaranteedating'. The stable rating is the rating

Mattari Mahjong plays and that of our program. Our programcomputed by assuming that a player gets current results

plays 1000 games. We use the average rank for evaluation. forever. The guaranteed rating is the lower one-sided bounds
of the stable rating when the continuing results of games are

~ Table VII shows the results. We calculated the confidenceyrbitrarily selected. This evaluation is used for comparing the
interval of the average rankvalue < 0.05) using bootstrap results of human players.

resampling [8]. The difference between the average rank of

previous work [5] and that of our program is statistically - Resylts

significant by welcht-test (p-value = 0.01). In the case of

Mattari Mahjong, the result of our program is better than Table IX shows the result. The difference between the av-

that of Mattari Mahjong, but the difference is not statically erage rank of previous work [5] and that of our program is not

significant p-value = 0.29). statistically significant by welcli-test p-value = 0.22). Our
program, however, improves the guaranteed rating. Table X

Table VIl shows the percentage of winning and the per-shoys the percentage of the winning and rate of discarding a
centage of discarding a winning tile for opponents. The resu“?fvinning tile for opponents.

suggest the playing strength of our program is higher than that

of Mattari Mahjong. D. Discussion

B. Evaluation on Tenhou Our program has a tendency of folding when its hand is
weak and opponent players declare riichi. Figure 5 shows a
To examine the playing strength of our program comparedtate in which our program’s decision is to fold. Our program
to that of human players, we had our program play on thés waiting, but is hard to win. The probability that the red tile
internet Mahjong site called Tenhou. The rules are the same as a wining tile for opponents is high. Our program folded and
the case of Mattari Mahjong. Players can play games at varioudiscarded the eight balls.
tables depending on their skill level. There are four types
of tables, “Houou”, “Tokujou”, “Joukyuu” and “Ippan” tables
in descending order of playing strength. We use the avera
rank (rating) for evaluation. The ratingR] has a negative
correlation to the average rank. The rating is computed &
follows:

Our program can play moves that are close to those of
uman players. Figure 6 shows a state where our program is
sitting on the fence. The best move for completing a hand
ould be 3 or 5 balls in this state. However, they are likely
0 be winning tiles for opponents. Our program discarded the

AveR R seven balls. At the end of the round, our program was waiting.
velv —
R'= R+ (50 — Rank x 20 + T) x 02, (14) Compared to our previous work, our program improves the

result against Mattari Mahjong. On the other hand, it does not
where Rank is the rank of previous gamesiveR is the  improve the result against human players. A possible reason
averageR of players in the table. The initak is 1500. An s that the winning ability of Mattai Mahjong is higher than
improvement in average rank by 0.1 roughly corresponds téhat of human players, and Monte Carlo moves are used more
100 rating points often in the actual games. Folding is better played than before.

L4http://homepage2.nifty.com/kmo2/ L5http://totutohoku.b23.coreserver.jp/hp/SLtotul4.htm



TABLE IX. RANK DISTRIBUTION

1st 2nd 3rd 4th  Average rank  Number of games  Stable rating  Guaranteed rating
Our program 0.241  0.281 0.248 0.23 2.460.04 2634 1718 1690
Mizukami et al. [5] | 0.253  0.248 0.251  0.248 2.490.06 1441 1689 1610

nodes for searching game trees of Mahjong, they use Monte
Carlo tree search that performs simulations. Opponents’ hands
and moves are randomly chosen in the simulation. Even though
the program does not use knowledge of Mahjong, its playing
strength is better than a naive program that only attempts to
reduce the number of tiles to win. The playing style of the
program differs from that of human players. The program often
steals a tile and tries to become waiting, since opponent players
do not win in the simulation.

There is a large body of previous work on computer
poker. The CFR+ method computes an approximate Nash

EEE@%{E equilibrium strategy using the results of self-play and has
e recently solved Heads-up limit hold’ em poker [1]. A Nash
equilibrium strategy will never lose in the long run. However,
it cannot identify and exploit weaknesses in its opponents’
play. Van der Kleij [2] used opponent modeling and Monte

There are bad moves in one-player Mahjong moves whefrarlo tree search for exploitation. Opponent modeling focuses
our program’s hand is hard to win. One-player Mahjong move®n predicting moves and hands. He proposed a clustering
are used to calculate the percentage of opponents who a?égorlthm that clusters players based on their playing style
waiting or folding, so the improvement of those would makeUSing game records. Aaron [3] proposed a method that updates
the whole program better. Our program uses some heuristi@Pponent models in the course pf games f_or exploitation. The
rules such as the one that if a player is waiting, he must declaf@0gram updates a hand rank distribution in the current game
riichi. To decide good moves, we need to improve the modeptate when the showdown occurs.
for predicting whether a player declares riichi or not.

Fig. 6. Fence-sitting state

What makes opponent modeling difficult in Mahjong is
that a program usually plays a small number of games with
unspecified players. Naive opponent modeling that attempts to

Previously, we defined one-player Mahjong as a Mahjongpredict specific opponents’ moves and hands is not suitable for
game where the number of players is one and players cannbtahjong. We therefore take a different approach for opponent
steal a tile [5]. We developed a one-player Mahjong playemodeling that treats general players with abstracted hands.
using game records of human players, analyzed the difference
between four and one-player Mahjong and extended the one-
player Mahjong by filling the difference. The playing strength
of our program was higher than that of the average human

player. These results suggest that it is important for a program . .
to be able to fold and steal tiles in Mahjong. One of the In this paper, we ha\(e proposed a method that COI’IS.Id-
’%s opponent models trained with game records and decides

IX. RELATED WORK

X. CONCLUSION

problems with this approach is that we needed to manuall . o . .
tag data containing state where players fold. A large amou oves using prediction results and Monte Calro simulation.
xperimental results show that the performance of the three

of combination data of the player’s hands and situations o L Y

a game is required. Another problem is that it is difficult to Prediction models is higher than that of an expert player. Our

collect required data for training. Yet another problem is thaf?r©g"am achieves a good balance between folding and aiming

the program cannot choogence-sitting® moves. or a win like human players. On the large on'llne Mahjong

site, Tenhou, our program has achieved a rating of 1718 in

Wagatsuma et al. [9] proposed a Support Vector Regressia?643 games, which is roughly the same as that of the average

method for predicting the score of an opponent’s hand. Iplayers in the Joukyuu table.

extracts feature vectors from game records and predicts values

when players discard tiles. One problem with their method is  In future work, we plan to take the scores of the players into

that it is not effectively trained due to some states where th@ccount. Our program chooses the same moves regardless of

players are waiting in the training data set. Another problenthe players’ scores. Expert players consider scores when they

is that their estimation accuracy is only evaluated based on th@ake a hand and judge whether to fold or not against riichi.

agreement rate between humans and the program. These decisions have a great influence on the final rank and are

o . . ._essential in improving playing strength. The value calculated
Miki and Chikayama [10] proposed Mahjong players usingj, 5 simulation needs to be converted into a different value

Monte Carlo tree search. Due to the enormous number of Iegf,5; reflects the result of the game. If the model predicts a
16Fence-sittings a strategy in which a player tries to win or make a waiting Fank distribution using current scores, an expected rank can
hand and, at the same time, avoid discarding a winning tile for opponents. be used as a reward of simulation.
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