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Abstract — Computational complexity theories have been 

playing central roles in all areas of computer science.  
Traditionally, computational complexity is based on the 
random access memory (RAM) model, in which unit 
amount of data at an arbitrary location in the memory can 
be accessed with some fixed constant cost.  Recent advances 
in information technologies made this assumption 
unrealistic.  The speed gap between the processing units and 
the main memory has been widening dramatically, 
demanding for deep memory hierarchies.  Recent parallel 
processing systems have more processors than that can cost-
effectively share the same memory without cache 
mechanism.  Distributed computation is getting more and 
more popular.  All these demand for a computational 
complexity model that is more aware of locality.  In this 
paper, we propose a new framework for computational 
complexity, named access complexity, in which the cost is in 
the data transfer than in computation itself.  The model is 
designed so that it naturally reflects the mechanisms used in 
modern information systems: hierarchical memory, parallel 
processing, and distributed processing over computer 
networks. 

Keywords — computational complexity, memory model, 
parallel processing, distributed processing. 
 

I. INTRODUCTION 

The theories of computational complexity have been 
playing central roles in selecting one among different 
algorithms for the same task.  If there are two or more 
algorithms to achieve the same task, an algorithm with 
smaller computational complexity is preferred because a 
small difference in the computational complexities of two 
algorithms makes a large difference in time required to 
achieve the task as the size of the processed data 
increases.  As algorithm selection is a key issue in all the 
information technology area, whether the computational 
complexity theory can actually tell the differences of 
computation costs is a crucial question. 

Traditionally, computational complexity has been 
aware mainly of the cost of computation.  Memory access 
cost is often estimated based on the random access 
memory (RAM) model.  In the RAM model, data of unit 
size at any location in the memory can be accessed with 
some fixed constant cost.  As any memory access is for 
some computation (such as arithmetical and logical 
operations or making decisions on equality or inequality), 

if you count cost for computation, you are free to ignore 
memory access cost as it is counted as a part of the 
computation cost. 

Recent advances in information technologies, however, 
made this random access assumption unrealistic.  The 
speed gap between the processing units and the main 
memory has been widening dramatically, demanding for 
deeper memory hierarchies.  Whether the processed data 
fit in the cache or not makes quite large differences.  The 
difference is often greater than the difference 
between )(log nO  and )log(log nO .1  An auxiliary notion 
to compensate this problem of the RAM model, called 
“working set”, was proposed and used widely for more 
realistic performance analysis, but it remains to be a 
patch to the base theory, and cannot be incorporated 
smoothly with other parts of the theory. 

As the clock speed does not increase in the same pace 
as the circuit scale, parallel processing is getting more 
cost effective.  Parallel processing systems use more and 
more processors, and thus processors cannot simply share 
the same memory system smoothly.  Memory systems of 
most of the modern parallel processing systems have 
non-flat organization; accessing some parts of the 
memory from one processor is much less costly than 
other parts of the memory.2  Software tuning has to make 
this difference into consideration. 

Distributed computation is getting more and more 
popular.  Recent advances in computational grid 
technologies enable us to use computer systems located 
quite remotely just like systems in the same computer 
room.  Although this makes software development and 
resource management much easier, communication cost 

                                                           
1 Performance is sometimes different at more than an 
order of magnitude between when all the accessed data 
fits in the cache and when they are much larger than the 
cache capacity.  Note that, to make nlog  ten times larger 

than nloglog , n has to be greater than 3091079.1 × . 
2 Here, we are talking about physical characteristics of 
the memory system.  The difference between NUMA 
(non-uniform memory access) and CC (cache coherent)-
NUMA architecture lies in the difference in programming 
ease and not in their performance. 



due to the physical remoteness has to be taken into 
consideration for efficient computation. 

All these demand for awareness on locality.  Accessing 
memory closely located is less costly than to access 
memory remotely located.  To make the computational 
complexity useful in such modern situation, its model 
should be aware of the notion of locality.  But which 
model should replace the good-old, simple and beautiful 
RAM model?  Simply adding the memory access cost to 
the traditional complexity model would complicate it and 
may make algorithm analyses much more difficult. 

In this paper, we propose a new framework for 
computational complexity that focuses only on data 
transfer cost.  Reversing the traditional cost model, we 
will neglect the cost of arithmetic and logic operations.  
Computation is costly only because its operands have to 
be fetched and its result be stored.  The cost lies in data 
access and not in arithmetics. 

The model is designed so that it naturally reflects the 
mechanisms used in modern information processing 
systems: hierarchical memory, parallel processing, and 
distributed processing over computer networks. 

II. COMPUTATION MODEL 

As stated in the previous section, we consider the costs 
of data access only, not that of arithmetic/logic operations.  
This naturally leads us to the following computation 
model. 

A. Infinitely Many Processors with Infinite 
Performance 

As we only care data access costs and arithmetic/logic 
operation costs are simply ignored, we can assume that 
there are arbitrarily many processors with infinite 
processing speed.  Processing capacity is only limited by 
data transfer capacity and not by capacity of operations 
on them, such as the number of sum-product operations 
in unit time. 

This does not lead to infinitely fast processing.  Any 
operation requires fetching of its operands and storing of 
its result.  These operations require data transfer and thus 
with some costs. 

With this assumption, out model naturally include 
parallel processing. 

B. Data Transfer Cost as a Function of Distance 

As we would like to reflect the notion of locality, the 
notion of distance has to be introduced into the model.  
We are yet to know which function represents the real-
world systems most appropriately, but the cost should be 
expressed as a monotonic function of distance. 

We decided to start with the function dlog  in which 
d is the distance between two ends of data transfer. 

C. Memory Space with Finite Density 

The memory space should have finite density.  If its 
density were infinite, all the data can be stored at a single 
point and the transfer cost function would be of no use. 

What topology the memory space should have is 
another question.  We will start with the simplest of all: 
one dimensional Euclidean space, that is, a linear space.  
Data are distributed on this line with some finite density.  
Computation is performed at somewhere on this line.  
Any two data items have a non-zero distance between 
them, and thus computation using them requires some 
transfer cost. 

D. Continuity Assumption 

Data storage of actual information system consists of 
discrete components.  For example, first-level cache, 
second-level cache, and the main memory are discrete 
components with finite capacities.  In the real world, 
there exists apparent discontinuity between them; 
performance suddenly goes down when a program starts 
to access data larger than the cache capacity, for example. 

Although this is the reality, taking this discontinuity 
into account brings a troublesome issue into algorithm 
analyses.  We decided to ignore this and make the 
memory space model completely planar.  There is no 
singular points on this plane. 

E. Layered Communication Channels 

Accessing the same or closely located data by many 
processors should result in congestion of communication.  
In actual parallel processing systems, this is one of the 
typical sources of unexpected performance degradation. 

The communication mechanism of our model, however, 
should represent all the different kinds of physical 
communication channels: wide area networks, local area 
networks, I/O buses, memory buses, on-chip buses for 
cache memory access, and even register transfer paths.  
Congestion in the wide area network should not be an 
obstacle to register transfer. 

We thus decided to give the model multiple layers of 
communication.  Lower layers are used only for local 
communication.  Higher layers are for communication 
over larger distances.  Multiple communication activities 
can coexist as far as they do not overlap. 

Communication activities are initiated at a lowest level.  
When data should transfer data remotely, the activity 
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Fig. 1.  Layered communication channels: A data 
transfer activity is initiated at the lowest level, goes 
to higher levels, and finally goes down again before 
reaching the destination. 



would go up to a one higher level.  This escalation is 
repeated until a certain level is reached, and then the 
activity gradually goes down to lower levels, until it 
reaches the destination point at the lowest level.  

Only those communication activities in the same layer 
should interfere with each other.  For example, register 
transfer should not slow down network transfer between 
two other neighboring processors.  The width of the area 
that a communication activity interferes with another 
should also depend on how remote the data transfer is.  
Register transfer in one processor does not interfere with 
that of the neighboring processor, but network transfer in 
the same segment does. 

For simplicity, we assume that all the layers have the 
same throughput at any given point.  However, as 
interference effects wider area in higher level, total 
throughput of a layer is higher in lower levels than higher 
levels.  This depicts the fact that, although optical fiber 
communication has capacity comparable to that of 
register transfer, there can be millions of processors 
transferring data between registers within the range of 
one optical fiber segment. 

F. Communication Load Sum-Up Model 

The layered communication channel model aims to 
capture the motion of traveling data packets.  It simulates 
a certain amount of realistic behavior.  However, it is still 
difficult for analyzing some typical algorithms such as 
FFT, sorting, et al.  For this reason, we have designed an 
even more simplified communication channel model: 
load sum-up model.   

Data are transferred in packets, as in previously 
introduced layered communication channel model.  
Packets speed up and down exponentially proportional to 

the time of their travel as in the layered channel model. 
Thus, communication delay of each packet on vacant 
channel remains the same.  The difference is that the 
communication channel has only one layer. 

In this load sum-up model, a packet consumes up a part 
of the limited throughput of the single layer channel, 
rather than completely occupying a single layer.  Each 
packet burdens a certain area of the channel.  The total of 
the load a packet burdens the channel is proportional to 
the amount of data in the packet, but the size of the area 
in the channel that a packet affects is proportional to the 
speed of the packet at the time; faster a packet, wider area 
it affects.  If the load exceeds the throughput of the 
channel at any point of the affected area, the transfer of 
all the packets in the area slowed down.  If the load 
consumes two times of the throughput, communication 
delay becomes two times longer than ordinary delay.   

This model neglects the layered structure of the 
communication channel of the real world.  Thus, a data 
packet of a local area network interferes with the 
communication between registers to a certain degree.  
However, this model very much simplifies the 
communication behavior and makes communication 
analysis much easier for some communication patterns. 

We propose these two communication channel models, 
and try to examine the validness and the expressiveness. 

III. ABSTRACT MACHINE 

An abstract machine that has the features of the above-
described model has been designed.  Its specification is 
described here briefly. 

A. Memory 

Memory is infinitely large one-dimensional array of 
words.  The reason that we did not make it truly 
continuous nor an array of bits is simply to make 
emulation of the abstract machine easier and more 
efficient.  The word size can be chosen arbitrarily, but we 
decided to use 64 bit words, as double-precision floating 
point arithmetics seems to enable us writing various 
appropriate benchmark examples. 

B. Infinitely Many Processors 

As stated above, there are infinitely many processing 
units distributed densely.  Each of such processing units 
has an ordinary instruction sets, such as arithmetical and 
logical operations and conditional branches. 

To make finite memory density assumption effective 
while allowing infinitely many densely located 
processors, processors do not have any local memory, 
that is, processors do not have registers.  Instructions 
operate only on memory operands and the results are 
always stored in memory.3 
                                                           
3 To be precise, processors have a program counter.  This 
actually can be used as memory, and can be considered as 
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Fig. 2.  Summed-up communication channels: A data 
transfer activity is initiated as a packet with narrow but high 
effect extent.  Its effect extent gradually becomes wider but 
lower, and then returns to a narrow and low profile before 
reaching the destination.  Loads of different packets are 
summed up.



C. Notion of the Current Location 

What decide the cost of operations are distances 
between the location of operation and memory locations 
to fetch operands from and to store results to.  Thus we 
have to be aware of the location of the operation. 

When each instruction is executed, it is executed at a 
certain “execution location”.  As the memory consists of 
discrete words, the location is also discrete: it tells at 
which word the instruction is executed. 

Each instruction has a field to specify the “next 
location”, which is the place in the data space at which 
the next instruction is executed. 

This should not be confused with the address of the 
next instruction.  The address of the next instruction is 
normally one next to the current unless explicitly 
specified in branch instructions, exactly as with 
conventional processors.  The “next location” specifies 
the location in the data space rather in the instruction 
space. 

D. Addressing Modes 

Operand addressing modes are one of the following. 
・ Absolute: Absolute address. 
・ Relative: Relative to the current location. 
・ Indirect: Indirect addressing on either absolute 

or relative memory location. 
Note that there are no base or index registers as 
processors do not have any registers. 

E. Instructions for Parallel Processing 

Several instructions are added for creation and 
termination of new threads, and for synchronization 
between two threads.  For synchronization, we 
incorporated conventional test-and-set to the instruction 
set. 

F. Communication Costs  

Operand fetch consists of two phases.  First, the 
operand fetch request is sent as a packet to the location of 
the operand.  When it is reached at the location, then a 
packet to actually transfer the requested data is sent the 
reverse way.  For storing the result, only a one-way 
message is needed. 

Any data transfer, including the data fetch request, has 
communication delay.  The cost consists of the minimum 
delay of one clock for initiating the transfer.  Data 
transfer packet starts from the lowest level in the 
communication layer, and gradually goes up to higher 
layers.  The lowest level of the communication layers to 
transfer data in one clock only to the location of the 
adjacent word.  The second layer is twice as fast: it 

                                                                                              
a defect of the abstract machine.  We get around this 
defect simply by not using such a programming style that 
utilizes the program counter to hold a meaningful amount 
of data. 

transfers data two words away.  The third layer is again 
twice as fast so that it transfers four words away in one 
clock, and so on.  In general, the n’th layer can transfer 
data n2 words away in a single clock.  It should be easy 
to see that, in total, this realizes )(logdO delay for 
transfer of distance d , if congestion doesn’t make the 
delay larger. 

G. Emulator 

We built an emulator of the above-described abstract 
machine for carrying out experiments on describing 
various algorithms and obtain performance data.  The 
address space of the emulator cannot actually be 
infinitely large, but a full 64 bit address space, which is 
large enough for any emulation that terminates in a 
reasonable amount of time. 

The emulator is equipped with an assembler, linkage 
editor, and a visualization tool. 

IV. A HIGHER LEVEL LANGUAGE 

Using machine language for describing various 
algorithms is not an easy task.  Use of a higher level 
language is desirable.  However, as computational 
complexity is sensitive to data locations in our model, 
conventionally used languages such as C are 
inappropriate; in such languages, variables, both local 
and global, are allocated at some place that the language 
processors decide automatically.  The program has no 
control over the decision. 

We thus designed and implemented a new language 
similar to language C but with explicit memory allocation 
feature.  The language is called Cema, which stands for 
“C with Explicit Memory Allocation”. 

A. Explicit Stack Allocation 

To have control over placement of local variables, 
Cema provides a primitive to allocate the stack area of a 
procedure invocation at a specified location.  The syntax 
is as follows. 

proc(…)@stack; 
Here, stack, a stack type variable whose details are 
described below, specifies the location of the stack for 
this invocation of proc.  Local variables and other 
working storage required for the invocation is 
automatically allocated on the stack, as with conventional 
implementation of C language. 

A stack type for a procedure proc is denoted as follows. 
stack_for proc 

The size of the area required for invocation of proc is 
automatically computed by the compiler, including areas 
for any procedure calls from inside it.  If proc has 
recursive invocations without explicit memory allocation 
using the syntax described above, required size cannot be 
computed statically, and thus the compiler generates an 
error.  Recursive calls therefore always require explicit 
memory allocation. 



B. Threads and Synchronization 

New threads are created with the following syntax. 
fork proc(…)@stack; 

A new thread is created and proc is invoked within the 
thread.  The thread uses the specified stack.  The thread 
terminates when the control is returned from the 
invocation. 

A special type is provided for synchronization 
semaphore. 

C. Implementation 

A stack frame consists of the following slots. 
・ Continuation: Instruction address to execute 

after finishing the procedure invocation of this 
stack frame.  This is a generalization of return 
address. 

・ Return Location: Execution location for 
execution after returning from the invocation of 
this frame.  While a procedure is executing, 
execution location is the top of the stack frame.  
Thus, this slot corresponds to the stack frame 
link in conventional implementations of C-like 
languages. 

・ Working Area: For local variables and 
temporary storage for evaluating expressions. 

V. PRELIMINARY EVALUATION 

A. Analysis of bitonic sort 

In this section, we analyze the computational cost of 
the bitonic sort algorithm on our model.  Bitonic sort is 
one of the sorting networks.  Sorting of n  elements 
costs )log( 2 nnO  in RAM model, and 

))log(( 2 PnnO in PRAM model with P  processors.   
The layered communication channel model is too 

complicated to analyze its communication pattern.  Thus, 
we use the load sum-up model here. 

Initially, the data to be sorted is placed in a one-
dimensional array.  Every bitonic merge (n) stage has 
communications of two data that are placed 2n  units 
apart.  These communications have latency of )(lognO .  
Thus, the whole bitonic sort (n) operation costs 

)log( 3 nnO . 
For analysis of parallel execution, we have to consider 

communication congestion.  Every communication in 
bitonic merge (n) has the distance of  Pn 2 .  Each 
packet has the same speed and the same load distribution.  
The load of the communication channel becomes highest 
when we use 2n  processors.  Even in this situation, the 
load does not exceed that of when only one packet is 
transferred, that is, when the operation is sequential.  The 
load does not consume up the whole throughput, at 
anywhere and anytime.  Congestion does not occur at all 
and thus, bitonic sort (n) costs ))log(( 3 PnnO . 

B. Benchmarks on real machines 

We implemented the bitonic sort algorithm on some 
parallel machines, and examined the fitness of the 
analysis described above.  Target systems are: 

・ Ultra SPARC III Cu, 1.2GHz, 8CPU. 
・ Pentium 4 Xeon, 2.4GHz, 2CPU. 

Both are shared memory machine.  The program is 
written with the pthread library. 

Figure 3 shows the execution time ratio compared to 
the PRAM model.  The difference of the absolute value 
of each machine is meaningless.  As clearly seen in the 
figure, the ratio is increasing at large data sizes.  

Figure 4 shows the same data compared with our model.  
The ratio seems to be converging to a constant as the data 
sizes increase.  Our data model to have correctly captured 
the behaviors of different systems of the real world. 

These experiments are all on shared memory machines.  
These machines have quite powerful communication 
channels compared to their parallelism.  PC clusters, in 

Fig. 4. The bitonic sort algorithm compared to our model.
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contrast, do not have such a powerful communication 
bandwidth.  

We tested the communication part of the bitonic sort 
algorithm on a PC cluster.  The program only transfers 
data in the communication pattern required in the 
algorithm.  The program is written with phoenix, a 
communication library for distributed computation.  The 
test environment is a system consisting of 64 node each 
with dual Xeon 2.4GHz processors.  Nodes are connected 
with a Gbit-ether network. 

The result is shown in figure 5.  The ratio of real 
speedup to ideal speedup is getting smaller.  This means 
overwhelming data packets brought in measurable 
communication delay.  Our model could not represent 
this behavior. 

The decline looks consistent; adjustment required to 
our model might be simple.  The layered communication 
channel model might also fill the gap.  Evaluation of the 
applicable range of our model is our future work. 

VI. RELATED WORK 

In 1987, Aggarwal et al. proposed a sequential 
processing model with non-random access memory 
model and showed complexity analysis on the model [1].  
In their model, access cost of data at address x is 
proportional to log x.  They showed an algorithm to 
realize the same complexity as in the RAM model for 
matrix multiplication, that is, )( 3nO , where n is the size 
of one dimension of arrays.  They also showed that, for 
problems that requires less repeated accesses to the same 
data cannot keep the efficiency of algorithms for RAM.  
For example, FFT and sorting have the complexity 
of )logloglog( nnnO  on their model, rather than 

)log( nnO achievable on RAM. 
Parallel random access machine (PRAM) model has 

long been investigated by many researchers on parallel 
algorithm design area.  PRAM is a straightforward 

extension of the RAM model to parallel processing and 
has the same problem with the RAM model that memory 
access locality is not taken into consideration in the 
analysis. 

Cullar et al. proposed a frame work named LogP, 
which is a simplified distributed memory model [2].  The 
model characterizes a parallel processing system by four 
parameters.  Although this simplification makes analysis 
easier while keeping access cost into consideration, it 
does not take distances between processors into account, 
and, more crucially, does not take memory access costs 
within each processor into account. 

In a sense, our model is an extension of Aggarwal’s 
work so that it can analyze parallel algorithms in a 
unified manner. 

C. Conclusion 

A new framework for computational complexity is 
proposed.  The processing costs taken into consideration 
in the model are only those costs of data communication.  
Costs of computation are simply ignored. 

An abstract machine that fits the model has been given. 
It is shown that ignoring computation costs does not lead 
to an unrealistic model.  

The design of a higher level language for describing 
algorithms on the abstract machine is also reported.  The 
language is reasonably easy to describe complicated 
algorithms while allowing explicit memory allocation, 
which is a key to efficiency of algorithms on the model. 

We are yet to prove the model to be actually useful.  
The following two issues have to be investigated. 

・ Ease of Analyses: whether analyses of 
algorithms under the model is not too hard. 

・ Fitness: whether the results of analyses on the 
model actually represents real-world 
performance well. 

To see the above two, more experiments of describing 
various algorithms and analyzing them on the model are 
to be done. 
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Fig. 5. The ratio of real speedup compared to the ideal. 
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