
Access Complexity:
A New Framework for Computational Complexity

Daisaku Yokoyama†, Nobuya Watanabe‡, and Takashi Chikayama†
†School of Frontier Sciences, the University of Tokyo, Tokyo, Japan

{yokoyama, chikayama}@logos.k.u-tokyo.ac.jp
‡Faculty of Engineering, Okayama University, Okayama, Japan

nobuya@giga.it.okayama-u.ac.jp

Abstract — Computational complexity theories have been

playing central roles in all areas of computer science.
Traditionally, computational complexity is based on the
random access memory (RAM) model, in which unit
amount of data at an arbitrary location in the memory can
be accessed with some fixed constant cost. Recent advances
in information technologies made this assumption
unrealistic. The speed gap between the processing units and
the main memory has been widening dramatically,
demanding for deep memory hierarchies. Recent parallel
processing systems have more processors than that can cost-
effectively share the same memory without cache
mechanism. Distributed computation is getting more and
more popular. All these demand for a computational
complexity model that is more aware of locality. In this
paper, we propose a new framework for computational
complexity, named access complexity, in which the cost is in
the data transfer than in computation itself. The model is
designed so that it naturally reflects the mechanisms used in
modern information systems: hierarchical memory, parallel
processing, and distributed processing over computer
networks.

Keywords — computational complexity, memory model,
parallel processing, distributed processing.

I. INTRODUCTION

The theories of computational complexity have been
playing central roles in selecting one among different
algorithms for the same task. If there are two or more
algorithms to achieve the same task, an algorithm with
smaller computational complexity is preferred because a
small difference in the computational complexities of two
algorithms makes a large difference in time required to
achieve the task as the size of the processed data
increases. As algorithm selection is a key issue in all the
information technology area, whether the computational
complexity theory can actually tell the differences of
computation costs is a crucial question.

Traditionally, computational complexity has been
aware mainly of the cost of computation. Memory access
cost is often estimated based on the random access
memory (RAM) model. In the RAM model, data of unit
size at any location in the memory can be accessed with
some fixed constant cost. As any memory access is for
some computation (such as arithmetical and logical
operations or making decisions on equality or inequality),

if you count cost for computation, you are free to ignore
memory access cost as it is counted as a part of the
computation cost.

Recent advances in information technologies, however,
made this random access assumption unrealistic. The
speed gap between the processing units and the main
memory has been widening dramatically, demanding for
deeper memory hierarchies. Whether the processed data
fit in the cache or not makes quite large differences. The
difference is often greater than the difference
between)(log nO and)log(log nO .1 An auxiliary notion
to compensate this problem of the RAM model, called
“working set”, was proposed and used widely for more
realistic performance analysis, but it remains to be a
patch to the base theory, and cannot be incorporated
smoothly with other parts of the theory.

As the clock speed does not increase in the same pace
as the circuit scale, parallel processing is getting more
cost effective. Parallel processing systems use more and
more processors, and thus processors cannot simply share
the same memory system smoothly. Memory systems of
most of the modern parallel processing systems have
non-flat organization; accessing some parts of the
memory from one processor is much less costly than
other parts of the memory.2 Software tuning has to make
this difference into consideration.

Distributed computation is getting more and more
popular. Recent advances in computational grid
technologies enable us to use computer systems located
quite remotely just like systems in the same computer
room. Although this makes software development and
resource management much easier, communication cost

1 Performance is sometimes different at more than an
order of magnitude between when all the accessed data
fits in the cache and when they are much larger than the
cache capacity. Note that, to make nlog ten times larger

than nloglog , n has to be greater than 3091079.1 × .
2 Here, we are talking about physical characteristics of
the memory system. The difference between NUMA
(non-uniform memory access) and CC (cache coherent)-
NUMA architecture lies in the difference in programming
ease and not in their performance.

due to the physical remoteness has to be taken into
consideration for efficient computation.

All these demand for awareness on locality. Accessing
memory closely located is less costly than to access
memory remotely located. To make the computational
complexity useful in such modern situation, its model
should be aware of the notion of locality. But which
model should replace the good-old, simple and beautiful
RAM model? Simply adding the memory access cost to
the traditional complexity model would complicate it and
may make algorithm analyses much more difficult.

In this paper, we propose a new framework for
computational complexity that focuses only on data
transfer cost. Reversing the traditional cost model, we
will neglect the cost of arithmetic and logic operations.
Computation is costly only because its operands have to
be fetched and its result be stored. The cost lies in data
access and not in arithmetics.

The model is designed so that it naturally reflects the
mechanisms used in modern information processing
systems: hierarchical memory, parallel processing, and
distributed processing over computer networks.

II. COMPUTATION MODEL

As stated in the previous section, we consider the costs
of data access only, not that of arithmetic/logic operations.
This naturally leads us to the following computation
model.

A. Infinitely Many Processors with Infinite
Performance

As we only care data access costs and arithmetic/logic
operation costs are simply ignored, we can assume that
there are arbitrarily many processors with infinite
processing speed. Processing capacity is only limited by
data transfer capacity and not by capacity of operations
on them, such as the number of sum-product operations
in unit time.

This does not lead to infinitely fast processing. Any
operation requires fetching of its operands and storing of
its result. These operations require data transfer and thus
with some costs.

With this assumption, out model naturally include
parallel processing.

B. Data Transfer Cost as a Function of Distance

As we would like to reflect the notion of locality, the
notion of distance has to be introduced into the model.
We are yet to know which function represents the real-
world systems most appropriately, but the cost should be
expressed as a monotonic function of distance.

We decided to start with the function dlog in which
d is the distance between two ends of data transfer.

C. Memory Space with Finite Density

The memory space should have finite density. If its
density were infinite, all the data can be stored at a single
point and the transfer cost function would be of no use.

What topology the memory space should have is
another question. We will start with the simplest of all:
one dimensional Euclidean space, that is, a linear space.
Data are distributed on this line with some finite density.
Computation is performed at somewhere on this line.
Any two data items have a non-zero distance between
them, and thus computation using them requires some
transfer cost.

D. Continuity Assumption

Data storage of actual information system consists of
discrete components. For example, first-level cache,
second-level cache, and the main memory are discrete
components with finite capacities. In the real world,
there exists apparent discontinuity between them;
performance suddenly goes down when a program starts
to access data larger than the cache capacity, for example.

Although this is the reality, taking this discontinuity
into account brings a troublesome issue into algorithm
analyses. We decided to ignore this and make the
memory space model completely planar. There is no
singular points on this plane.

E. Layered Communication Channels

Accessing the same or closely located data by many
processors should result in congestion of communication.
In actual parallel processing systems, this is one of the
typical sources of unexpected performance degradation.

The communication mechanism of our model, however,
should represent all the different kinds of physical
communication channels: wide area networks, local area
networks, I/O buses, memory buses, on-chip buses for
cache memory access, and even register transfer paths.
Congestion in the wide area network should not be an
obstacle to register transfer.

We thus decided to give the model multiple layers of
communication. Lower layers are used only for local
communication. Higher layers are for communication
over larger distances. Multiple communication activities
can coexist as far as they do not overlap.

Communication activities are initiated at a lowest level.
When data should transfer data remotely, the activity

Memory Space

Fig. 1. Layered communication channels: A data
transfer activity is initiated at the lowest level, goes
to higher levels, and finally goes down again before
reaching the destination.

would go up to a one higher level. This escalation is
repeated until a certain level is reached, and then the
activity gradually goes down to lower levels, until it
reaches the destination point at the lowest level.

Only those communication activities in the same layer
should interfere with each other. For example, register
transfer should not slow down network transfer between
two other neighboring processors. The width of the area
that a communication activity interferes with another
should also depend on how remote the data transfer is.
Register transfer in one processor does not interfere with
that of the neighboring processor, but network transfer in
the same segment does.

For simplicity, we assume that all the layers have the
same throughput at any given point. However, as
interference effects wider area in higher level, total
throughput of a layer is higher in lower levels than higher
levels. This depicts the fact that, although optical fiber
communication has capacity comparable to that of
register transfer, there can be millions of processors
transferring data between registers within the range of
one optical fiber segment.

F. Communication Load Sum-Up Model

The layered communication channel model aims to
capture the motion of traveling data packets. It simulates
a certain amount of realistic behavior. However, it is still
difficult for analyzing some typical algorithms such as
FFT, sorting, et al. For this reason, we have designed an
even more simplified communication channel model:
load sum-up model.

Data are transferred in packets, as in previously
introduced layered communication channel model.
Packets speed up and down exponentially proportional to

the time of their travel as in the layered channel model.
Thus, communication delay of each packet on vacant
channel remains the same. The difference is that the
communication channel has only one layer.

In this load sum-up model, a packet consumes up a part
of the limited throughput of the single layer channel,
rather than completely occupying a single layer. Each
packet burdens a certain area of the channel. The total of
the load a packet burdens the channel is proportional to
the amount of data in the packet, but the size of the area
in the channel that a packet affects is proportional to the
speed of the packet at the time; faster a packet, wider area
it affects. If the load exceeds the throughput of the
channel at any point of the affected area, the transfer of
all the packets in the area slowed down. If the load
consumes two times of the throughput, communication
delay becomes two times longer than ordinary delay.

This model neglects the layered structure of the
communication channel of the real world. Thus, a data
packet of a local area network interferes with the
communication between registers to a certain degree.
However, this model very much simplifies the
communication behavior and makes communication
analysis much easier for some communication patterns.

We propose these two communication channel models,
and try to examine the validness and the expressiveness.

III. ABSTRACT MACHINE

An abstract machine that has the features of the above-
described model has been designed. Its specification is
described here briefly.

A. Memory

Memory is infinitely large one-dimensional array of
words. The reason that we did not make it truly
continuous nor an array of bits is simply to make
emulation of the abstract machine easier and more
efficient. The word size can be chosen arbitrarily, but we
decided to use 64 bit words, as double-precision floating
point arithmetics seems to enable us writing various
appropriate benchmark examples.

B. Infinitely Many Processors

As stated above, there are infinitely many processing
units distributed densely. Each of such processing units
has an ordinary instruction sets, such as arithmetical and
logical operations and conditional branches.

To make finite memory density assumption effective
while allowing infinitely many densely located
processors, processors do not have any local memory,
that is, processors do not have registers. Instructions
operate only on memory operands and the results are
always stored in memory.3

3 To be precise, processors have a program counter. This
actually can be used as memory, and can be considered as

channel

time

memory

Speed down
due to congestion

Fig. 2. Summed-up communication channels: A data
transfer activity is initiated as a packet with narrow but high
effect extent. Its effect extent gradually becomes wider but
lower, and then returns to a narrow and low profile before
reaching the destination. Loads of different packets are
summed up.

C. Notion of the Current Location

What decide the cost of operations are distances
between the location of operation and memory locations
to fetch operands from and to store results to. Thus we
have to be aware of the location of the operation.

When each instruction is executed, it is executed at a
certain “execution location”. As the memory consists of
discrete words, the location is also discrete: it tells at
which word the instruction is executed.

Each instruction has a field to specify the “next
location”, which is the place in the data space at which
the next instruction is executed.

This should not be confused with the address of the
next instruction. The address of the next instruction is
normally one next to the current unless explicitly
specified in branch instructions, exactly as with
conventional processors. The “next location” specifies
the location in the data space rather in the instruction
space.

D. Addressing Modes

Operand addressing modes are one of the following.
・ Absolute: Absolute address.
・ Relative: Relative to the current location.
・ Indirect: Indirect addressing on either absolute

or relative memory location.
Note that there are no base or index registers as
processors do not have any registers.

E. Instructions for Parallel Processing

Several instructions are added for creation and
termination of new threads, and for synchronization
between two threads. For synchronization, we
incorporated conventional test-and-set to the instruction
set.

F. Communication Costs

Operand fetch consists of two phases. First, the
operand fetch request is sent as a packet to the location of
the operand. When it is reached at the location, then a
packet to actually transfer the requested data is sent the
reverse way. For storing the result, only a one-way
message is needed.

Any data transfer, including the data fetch request, has
communication delay. The cost consists of the minimum
delay of one clock for initiating the transfer. Data
transfer packet starts from the lowest level in the
communication layer, and gradually goes up to higher
layers. The lowest level of the communication layers to
transfer data in one clock only to the location of the
adjacent word. The second layer is twice as fast: it

a defect of the abstract machine. We get around this
defect simply by not using such a programming style that
utilizes the program counter to hold a meaningful amount
of data.

transfers data two words away. The third layer is again
twice as fast so that it transfers four words away in one
clock, and so on. In general, the n’th layer can transfer
data n2 words away in a single clock. It should be easy
to see that, in total, this realizes)(logdO delay for
transfer of distance d , if congestion doesn’t make the
delay larger.

G. Emulator

We built an emulator of the above-described abstract
machine for carrying out experiments on describing
various algorithms and obtain performance data. The
address space of the emulator cannot actually be
infinitely large, but a full 64 bit address space, which is
large enough for any emulation that terminates in a
reasonable amount of time.

The emulator is equipped with an assembler, linkage
editor, and a visualization tool.

IV. A HIGHER LEVEL LANGUAGE

Using machine language for describing various
algorithms is not an easy task. Use of a higher level
language is desirable. However, as computational
complexity is sensitive to data locations in our model,
conventionally used languages such as C are
inappropriate; in such languages, variables, both local
and global, are allocated at some place that the language
processors decide automatically. The program has no
control over the decision.

We thus designed and implemented a new language
similar to language C but with explicit memory allocation
feature. The language is called Cema, which stands for
“C with Explicit Memory Allocation”.

A. Explicit Stack Allocation

To have control over placement of local variables,
Cema provides a primitive to allocate the stack area of a
procedure invocation at a specified location. The syntax
is as follows.

proc(…)@stack;
Here, stack, a stack type variable whose details are
described below, specifies the location of the stack for
this invocation of proc. Local variables and other
working storage required for the invocation is
automatically allocated on the stack, as with conventional
implementation of C language.

A stack type for a procedure proc is denoted as follows.
stack_for proc

The size of the area required for invocation of proc is
automatically computed by the compiler, including areas
for any procedure calls from inside it. If proc has
recursive invocations without explicit memory allocation
using the syntax described above, required size cannot be
computed statically, and thus the compiler generates an
error. Recursive calls therefore always require explicit
memory allocation.

B. Threads and Synchronization

New threads are created with the following syntax.
fork proc(…)@stack;

A new thread is created and proc is invoked within the
thread. The thread uses the specified stack. The thread
terminates when the control is returned from the
invocation.

A special type is provided for synchronization
semaphore.

C. Implementation

A stack frame consists of the following slots.
・ Continuation: Instruction address to execute

after finishing the procedure invocation of this
stack frame. This is a generalization of return
address.

・ Return Location: Execution location for
execution after returning from the invocation of
this frame. While a procedure is executing,
execution location is the top of the stack frame.
Thus, this slot corresponds to the stack frame
link in conventional implementations of C-like
languages.

・ Working Area: For local variables and
temporary storage for evaluating expressions.

V. PRELIMINARY EVALUATION

A. Analysis of bitonic sort

In this section, we analyze the computational cost of
the bitonic sort algorithm on our model. Bitonic sort is
one of the sorting networks. Sorting of n elements
costs)log(2 nnO in RAM model, and

))log((2 PnnO in PRAM model with P processors.
The layered communication channel model is too

complicated to analyze its communication pattern. Thus,
we use the load sum-up model here.

Initially, the data to be sorted is placed in a one-
dimensional array. Every bitonic merge (n) stage has
communications of two data that are placed 2n units
apart. These communications have latency of)(lognO .
Thus, the whole bitonic sort (n) operation costs

)log(3 nnO .
For analysis of parallel execution, we have to consider

communication congestion. Every communication in
bitonic merge (n) has the distance of Pn 2 . Each
packet has the same speed and the same load distribution.
The load of the communication channel becomes highest
when we use 2n processors. Even in this situation, the
load does not exceed that of when only one packet is
transferred, that is, when the operation is sequential. The
load does not consume up the whole throughput, at
anywhere and anytime. Congestion does not occur at all
and thus, bitonic sort (n) costs))log((3 PnnO .

B. Benchmarks on real machines

We implemented the bitonic sort algorithm on some
parallel machines, and examined the fitness of the
analysis described above. Target systems are:

・ Ultra SPARC III Cu, 1.2GHz, 8CPU.
・ Pentium 4 Xeon, 2.4GHz, 2CPU.

Both are shared memory machine. The program is
written with the pthread library.

Figure 3 shows the execution time ratio compared to
the PRAM model. The difference of the absolute value
of each machine is meaningless. As clearly seen in the
figure, the ratio is increasing at large data sizes.

Figure 4 shows the same data compared with our model.
The ratio seems to be converging to a constant as the data
sizes increase. Our data model to have correctly captured
the behaviors of different systems of the real world.

These experiments are all on shared memory machines.
These machines have quite powerful communication
channels compared to their parallelism. PC clusters, in

Fig. 4. The bitonic sort algorithm compared to our model.

0.001

0.01

0.1

1

10

1.E+00 1.E+03 1.E+06 1.E+09

number of elements to be sorted

ra
ti
o
 o
f
e
x
e
c
u
ti
o
n
 t
im
e
 t
o
 o
u
r
m
o
de
l sparc/ref2

sparc8/ref2

xeon/ref2

xeon2/ref2

0.1

1

10

1.E+00 1.E+03 1.E+06 1.E+09

number of elements to be sorted

r
a
t
i
o

o
f

e
x
e
c
u
t
i
o
n

t
i
m
e

t
o

P
R
A
M

m
o
d
e
l

sparc/ref

sparc8/ref

xeon/ref

xeon2/ref

Fig. 3. The bitonic sort algorithm compared to
the PRAM model. Sparc means using one
CPU, sparc8 means using 8 CPUs, and so on.

contrast, do not have such a powerful communication
bandwidth.

We tested the communication part of the bitonic sort
algorithm on a PC cluster. The program only transfers
data in the communication pattern required in the
algorithm. The program is written with phoenix, a
communication library for distributed computation. The
test environment is a system consisting of 64 node each
with dual Xeon 2.4GHz processors. Nodes are connected
with a Gbit-ether network.

The result is shown in figure 5. The ratio of real
speedup to ideal speedup is getting smaller. This means
overwhelming data packets brought in measurable
communication delay. Our model could not represent
this behavior.

The decline looks consistent; adjustment required to
our model might be simple. The layered communication
channel model might also fill the gap. Evaluation of the
applicable range of our model is our future work.

VI. RELATED WORK

In 1987, Aggarwal et al. proposed a sequential
processing model with non-random access memory
model and showed complexity analysis on the model [1].
In their model, access cost of data at address x is
proportional to log x. They showed an algorithm to
realize the same complexity as in the RAM model for
matrix multiplication, that is,)(3nO , where n is the size
of one dimension of arrays. They also showed that, for
problems that requires less repeated accesses to the same
data cannot keep the efficiency of algorithms for RAM.
For example, FFT and sorting have the complexity
of)logloglog(nnnO on their model, rather than

)log(nnO achievable on RAM.
Parallel random access machine (PRAM) model has

long been investigated by many researchers on parallel
algorithm design area. PRAM is a straightforward

extension of the RAM model to parallel processing and
has the same problem with the RAM model that memory
access locality is not taken into consideration in the
analysis.

Cullar et al. proposed a frame work named LogP,
which is a simplified distributed memory model [2]. The
model characterizes a parallel processing system by four
parameters. Although this simplification makes analysis
easier while keeping access cost into consideration, it
does not take distances between processors into account,
and, more crucially, does not take memory access costs
within each processor into account.

In a sense, our model is an extension of Aggarwal’s
work so that it can analyze parallel algorithms in a
unified manner.

C. Conclusion

A new framework for computational complexity is
proposed. The processing costs taken into consideration
in the model are only those costs of data communication.
Costs of computation are simply ignored.

An abstract machine that fits the model has been given.
It is shown that ignoring computation costs does not lead
to an unrealistic model.

The design of a higher level language for describing
algorithms on the abstract machine is also reported. The
language is reasonably easy to describe complicated
algorithms while allowing explicit memory allocation,
which is a key to efficiency of algorithms on the model.

We are yet to prove the model to be actually useful.
The following two issues have to be investigated.

・ Ease of Analyses: whether analyses of
algorithms under the model is not too hard.

・ Fitness: whether the results of analyses on the
model actually represents real-world
performance well.

To see the above two, more experiments of describing
various algorithms and analyzing them on the model are
to be done.

ACKNOWLEDGEMENT

Discussion with Taiichi Yuasa, Kazunori Ueda,
Shinichiro Mori, Masahiro Yasugi, Tsuneyasu Komiya,
and Norio Kato has been helpful in designing the model
and the Cema language.

This research is partially supported by the Ministry of
Education, Science, Sports and Culture, Grant-in-Aid for
Scientific Research on Priority Areas, 13224050, 2003.

REFERENCES

[1] A. Aggarwal, et al. “Hierarchical memory with block
transfer,” Proc. 28th Symp. on Foundations of Computer
Science, 1987.

[2] D. Cullar, et al. “LogP: A Practical Model of Parallel
Computation,” CACM 39-11, 1996.

Fig. 5. The ratio of real speedup compared to the ideal.

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100

number of nodes

ra
ti
o
 o
f
re
al
 s
pe
e
du
p
to
 id
e
al 2^15

2^16

2^17

2^18

